一种基于部分卷积神经网络的人脸防欺骗方法

Lei Li, Xiaoyi Feng, Z. Boulkenafet, Zhaoqiang Xia, Mingming Li, A. Hadid
{"title":"一种基于部分卷积神经网络的人脸防欺骗方法","authors":"Lei Li, Xiaoyi Feng, Z. Boulkenafet, Zhaoqiang Xia, Mingming Li, A. Hadid","doi":"10.1109/IPTA.2016.7821013","DOIUrl":null,"url":null,"abstract":"Recently deep Convolutional Neural Networks have been successfully applied in many computer vision tasks and achieved promising results. So some works have introduced the deep learning into face anti-spoofing. However, most approaches just use the final fully-connected layer to distinguish the real and fake faces. Inspired by the idea of each convolutional kernel can be regarded as a part filter, we extract the deep partial features from the convolutional neural network (CNN) to distinguish the real and fake faces. In our prosed approach, the CNN is fine-tuned firstly on the face spoofing datasets. Then, the block principle component analysis (PCA) method is utilized to reduce the dimensionality of features that can avoid the over-fitting problem. Lastly, the support vector machine (SVM) is employed to distinguish the real the real and fake faces. The experiments evaluated on two public available databases, Replay-Attack and CASIA, show the proposed method can obtain satisfactory results compared to the state-of-the-art methods.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"223","resultStr":"{\"title\":\"An original face anti-spoofing approach using partial convolutional neural network\",\"authors\":\"Lei Li, Xiaoyi Feng, Z. Boulkenafet, Zhaoqiang Xia, Mingming Li, A. Hadid\",\"doi\":\"10.1109/IPTA.2016.7821013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently deep Convolutional Neural Networks have been successfully applied in many computer vision tasks and achieved promising results. So some works have introduced the deep learning into face anti-spoofing. However, most approaches just use the final fully-connected layer to distinguish the real and fake faces. Inspired by the idea of each convolutional kernel can be regarded as a part filter, we extract the deep partial features from the convolutional neural network (CNN) to distinguish the real and fake faces. In our prosed approach, the CNN is fine-tuned firstly on the face spoofing datasets. Then, the block principle component analysis (PCA) method is utilized to reduce the dimensionality of features that can avoid the over-fitting problem. Lastly, the support vector machine (SVM) is employed to distinguish the real the real and fake faces. The experiments evaluated on two public available databases, Replay-Attack and CASIA, show the proposed method can obtain satisfactory results compared to the state-of-the-art methods.\",\"PeriodicalId\":123429,\"journal\":{\"name\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"223\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2016.7821013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7821013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 223

摘要

近年来,深度卷积神经网络已成功地应用于许多计算机视觉任务中,并取得了良好的效果。因此,一些研究将深度学习引入人脸防欺骗中。然而,大多数方法只是使用最后的完全连接层来区分真实和虚假的面孔。受每个卷积核都可以看作是一个部分滤波器的思想启发,我们从卷积神经网络(CNN)中提取深度部分特征来区分真假人脸。在我们提出的方法中,CNN首先对人脸欺骗数据集进行微调。然后,利用分块主成分分析(PCA)方法对特征进行降维处理,避免了过拟合问题;最后,利用支持向量机(SVM)对真假人脸进行识别。在重播攻击和CASIA两个公开可用数据库上进行的实验表明,与现有方法相比,该方法可以获得满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An original face anti-spoofing approach using partial convolutional neural network
Recently deep Convolutional Neural Networks have been successfully applied in many computer vision tasks and achieved promising results. So some works have introduced the deep learning into face anti-spoofing. However, most approaches just use the final fully-connected layer to distinguish the real and fake faces. Inspired by the idea of each convolutional kernel can be regarded as a part filter, we extract the deep partial features from the convolutional neural network (CNN) to distinguish the real and fake faces. In our prosed approach, the CNN is fine-tuned firstly on the face spoofing datasets. Then, the block principle component analysis (PCA) method is utilized to reduce the dimensionality of features that can avoid the over-fitting problem. Lastly, the support vector machine (SVM) is employed to distinguish the real the real and fake faces. The experiments evaluated on two public available databases, Replay-Attack and CASIA, show the proposed method can obtain satisfactory results compared to the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信