基于医疗物联网的远程医疗框架,用于远程患者分诊和紧急医疗服务

Omar Sadeq Salman, N. A. A. Latiff, S. Arifin, O. Salman, Fahad Taha Al-Dhief
{"title":"基于医疗物联网的远程医疗框架,用于远程患者分诊和紧急医疗服务","authors":"Omar Sadeq Salman, N. A. A. Latiff, S. Arifin, O. Salman, Fahad Taha Al-Dhief","doi":"10.1109/ISTT56288.2022.9966532","DOIUrl":null,"url":null,"abstract":"The Internet of Medical Things (IoMT) and smart sensors are widely used in healthcare sectors. IoMT devices generate valuable and beneficial data for healthcare organizations. Chronic diseases are seriously threatening human health. In this situation, the IoMT provides essential monitoring of the status of patients who have chronic diseases. This paper proposes a new framework using telemedicine techniques for monitoring patients who have chronic diseases but are too far from a hospital. Furthermore, we present a triage algorithm using Random Forest machine learning techniques. The results demonstrate accurate results of 82.56% for the dataset of 572 patients. The proposed framework successfully predicts the severity status of the patients.","PeriodicalId":389716,"journal":{"name":"2022 IEEE 6th International Symposium on Telecommunication Technologies (ISTT)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internet of Medical Things Based Telemedicine Framework for Remote Patients Triage and Emergency Medical Services\",\"authors\":\"Omar Sadeq Salman, N. A. A. Latiff, S. Arifin, O. Salman, Fahad Taha Al-Dhief\",\"doi\":\"10.1109/ISTT56288.2022.9966532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Medical Things (IoMT) and smart sensors are widely used in healthcare sectors. IoMT devices generate valuable and beneficial data for healthcare organizations. Chronic diseases are seriously threatening human health. In this situation, the IoMT provides essential monitoring of the status of patients who have chronic diseases. This paper proposes a new framework using telemedicine techniques for monitoring patients who have chronic diseases but are too far from a hospital. Furthermore, we present a triage algorithm using Random Forest machine learning techniques. The results demonstrate accurate results of 82.56% for the dataset of 572 patients. The proposed framework successfully predicts the severity status of the patients.\",\"PeriodicalId\":389716,\"journal\":{\"name\":\"2022 IEEE 6th International Symposium on Telecommunication Technologies (ISTT)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 6th International Symposium on Telecommunication Technologies (ISTT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTT56288.2022.9966532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th International Symposium on Telecommunication Technologies (ISTT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTT56288.2022.9966532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

医疗物联网(IoMT)和智能传感器在医疗保健领域得到广泛应用。IoMT设备为医疗保健组织生成有价值且有益的数据。慢性病严重威胁着人类的健康。在这种情况下,IoMT对患有慢性疾病的患者的状态提供必要的监测。本文提出了一种利用远程医疗技术监测远离医院的慢性病患者的新框架。此外,我们提出了一种使用随机森林机器学习技术的分类算法。结果表明,对于572例患者的数据集,准确率为82.56%。该框架成功地预测了患者的严重程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Internet of Medical Things Based Telemedicine Framework for Remote Patients Triage and Emergency Medical Services
The Internet of Medical Things (IoMT) and smart sensors are widely used in healthcare sectors. IoMT devices generate valuable and beneficial data for healthcare organizations. Chronic diseases are seriously threatening human health. In this situation, the IoMT provides essential monitoring of the status of patients who have chronic diseases. This paper proposes a new framework using telemedicine techniques for monitoring patients who have chronic diseases but are too far from a hospital. Furthermore, we present a triage algorithm using Random Forest machine learning techniques. The results demonstrate accurate results of 82.56% for the dataset of 572 patients. The proposed framework successfully predicts the severity status of the patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信