单目视觉避障无人机:一种深度强化学习方法

Zhihan Xue, T. Gonsalves
{"title":"单目视觉避障无人机:一种深度强化学习方法","authors":"Zhihan Xue, T. Gonsalves","doi":"10.1109/ICITech50181.2021.9590178","DOIUrl":null,"url":null,"abstract":"In this paper, a method based on deep reinforcement learning (DRL) is proposed, which allows unmanned aerial vehicles (UAVs) to complete obstacle avoidance tasks only through vision in an environment full of common indoor obstacles. This technology is very important for indoor UAVs, due to the limited GPS signal and overcrowding of obstacles compared to the outdoor environment. We use Variational Autoencoder (VAE) to compress image information combined with the policy-based DRL model to implement the visual obstacle avoidance of VAVs. Simulation experiments have demonstrated that this method can make the UAV master obstacle avoidance in a continuous action space with a fixed direction. Compared with the traditional policy-based DRL visual obstacle avoidance algorithms, it can converge faster.","PeriodicalId":429669,"journal":{"name":"2021 2nd International Conference on Innovative and Creative Information Technology (ICITech)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Monocular Vision Obstacle Avoidance UAV: A Deep Reinforcement Learning Method\",\"authors\":\"Zhihan Xue, T. Gonsalves\",\"doi\":\"10.1109/ICITech50181.2021.9590178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a method based on deep reinforcement learning (DRL) is proposed, which allows unmanned aerial vehicles (UAVs) to complete obstacle avoidance tasks only through vision in an environment full of common indoor obstacles. This technology is very important for indoor UAVs, due to the limited GPS signal and overcrowding of obstacles compared to the outdoor environment. We use Variational Autoencoder (VAE) to compress image information combined with the policy-based DRL model to implement the visual obstacle avoidance of VAVs. Simulation experiments have demonstrated that this method can make the UAV master obstacle avoidance in a continuous action space with a fixed direction. Compared with the traditional policy-based DRL visual obstacle avoidance algorithms, it can converge faster.\",\"PeriodicalId\":429669,\"journal\":{\"name\":\"2021 2nd International Conference on Innovative and Creative Information Technology (ICITech)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd International Conference on Innovative and Creative Information Technology (ICITech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITech50181.2021.9590178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Innovative and Creative Information Technology (ICITech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITech50181.2021.9590178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于深度强化学习(DRL)的方法,使无人机在充满常见室内障碍物的环境中仅通过视觉即可完成避障任务。与室外环境相比,由于GPS信号有限且障碍物过多,因此该技术对室内无人机非常重要。采用变分自编码器(VAE)对图像信息进行压缩,并结合基于策略的DRL模型实现自动驾驶汽车的视觉避障。仿真实验表明,该方法能使无人机在固定方向的连续动作空间中掌握避障能力。与传统基于策略的DRL视觉避障算法相比,该算法收敛速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monocular Vision Obstacle Avoidance UAV: A Deep Reinforcement Learning Method
In this paper, a method based on deep reinforcement learning (DRL) is proposed, which allows unmanned aerial vehicles (UAVs) to complete obstacle avoidance tasks only through vision in an environment full of common indoor obstacles. This technology is very important for indoor UAVs, due to the limited GPS signal and overcrowding of obstacles compared to the outdoor environment. We use Variational Autoencoder (VAE) to compress image information combined with the policy-based DRL model to implement the visual obstacle avoidance of VAVs. Simulation experiments have demonstrated that this method can make the UAV master obstacle avoidance in a continuous action space with a fixed direction. Compared with the traditional policy-based DRL visual obstacle avoidance algorithms, it can converge faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信