Joonghyun Ryu, Rhohun Park, Youngsong Cho, Jeongyeon Seo, Deok-Soo Kim
{"title":"基于β -形状的分子混合表面计算","authors":"Joonghyun Ryu, Rhohun Park, Youngsong Cho, Jeongyeon Seo, Deok-Soo Kim","doi":"10.1109/ISVD.2007.1","DOIUrl":null,"url":null,"abstract":"It has been generally accepted that the structure of molecule is one of the most important factors which determine the functions of a molecule. Hence, studies have been conducted to analyze the structure of a molecule. Molecular surface is an important example of molecular structure. Given a molecular surface, the area and volume of the molecule can be computed to facilitate problems such as protein docking and folding. Therefore, it is important to compute a molecular surface precisely and efficiently. This paper presents an algorithm for correctly and efficiently computing the blending surfaces of a protein which is an important part of the molecular surface. Assuming that the Voronoi diagram of atoms of a protein is given, we first compute the beta-shape of the protein corresponding to a solvent probe. Then, we use a search space reduction technique for the intersection tests while the link blending surface is computed. Once a beta-shape is obtained, the blending surfaces corresponding to a given solvent probe can be computed in O(n) in the worst case, where n is the number of atoms. The correctness and efficiency of the algorithm stem from the powerful properties of beta-shape, quasi-triangulation, and the interworld data structure.","PeriodicalId":148710,"journal":{"name":"4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"\\\\beta-shape Based Computation of Blending Surfaces on a Molecule\",\"authors\":\"Joonghyun Ryu, Rhohun Park, Youngsong Cho, Jeongyeon Seo, Deok-Soo Kim\",\"doi\":\"10.1109/ISVD.2007.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been generally accepted that the structure of molecule is one of the most important factors which determine the functions of a molecule. Hence, studies have been conducted to analyze the structure of a molecule. Molecular surface is an important example of molecular structure. Given a molecular surface, the area and volume of the molecule can be computed to facilitate problems such as protein docking and folding. Therefore, it is important to compute a molecular surface precisely and efficiently. This paper presents an algorithm for correctly and efficiently computing the blending surfaces of a protein which is an important part of the molecular surface. Assuming that the Voronoi diagram of atoms of a protein is given, we first compute the beta-shape of the protein corresponding to a solvent probe. Then, we use a search space reduction technique for the intersection tests while the link blending surface is computed. Once a beta-shape is obtained, the blending surfaces corresponding to a given solvent probe can be computed in O(n) in the worst case, where n is the number of atoms. The correctness and efficiency of the algorithm stem from the powerful properties of beta-shape, quasi-triangulation, and the interworld data structure.\",\"PeriodicalId\":148710,\"journal\":{\"name\":\"4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVD.2007.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVD.2007.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
\beta-shape Based Computation of Blending Surfaces on a Molecule
It has been generally accepted that the structure of molecule is one of the most important factors which determine the functions of a molecule. Hence, studies have been conducted to analyze the structure of a molecule. Molecular surface is an important example of molecular structure. Given a molecular surface, the area and volume of the molecule can be computed to facilitate problems such as protein docking and folding. Therefore, it is important to compute a molecular surface precisely and efficiently. This paper presents an algorithm for correctly and efficiently computing the blending surfaces of a protein which is an important part of the molecular surface. Assuming that the Voronoi diagram of atoms of a protein is given, we first compute the beta-shape of the protein corresponding to a solvent probe. Then, we use a search space reduction technique for the intersection tests while the link blending surface is computed. Once a beta-shape is obtained, the blending surfaces corresponding to a given solvent probe can be computed in O(n) in the worst case, where n is the number of atoms. The correctness and efficiency of the algorithm stem from the powerful properties of beta-shape, quasi-triangulation, and the interworld data structure.