{"title":"图的凸性二部线","authors":"V. Ponciano, R. S. Oliveira","doi":"10.5753/etc.2019.6403","DOIUrl":null,"url":null,"abstract":"For a nontrivial connected and simple graphs G= (V(G), E(G)), a set S E(G) is called edge geodetic set of G if every edge of G it’s in S or is contained in a geodesic joining some pair of edges in S. The edge geodetic number eds(G) of G is the minimum order of its edge geodetic sets. We prove that it is NP-complete to decide for a given bipartiti graphs G and a given integer k whether G has a edge geodetic set of cardinality at most k. A set M V(G) is called P3 set of G if all vertices of G have two neighbors in M. The P3 number of G is the minimum order of its P3 sets. We prove that it is NP-complete to decide for a given graphs G(diamond,odd-hole) free and a given integer k whether G has a P3 set of cardinality at most k.","PeriodicalId":315906,"journal":{"name":"Anais do Encontro de Teoria da Computação (ETC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convexidade em Grafo Linha de Bipartido\",\"authors\":\"V. Ponciano, R. S. Oliveira\",\"doi\":\"10.5753/etc.2019.6403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a nontrivial connected and simple graphs G= (V(G), E(G)), a set S E(G) is called edge geodetic set of G if every edge of G it’s in S or is contained in a geodesic joining some pair of edges in S. The edge geodetic number eds(G) of G is the minimum order of its edge geodetic sets. We prove that it is NP-complete to decide for a given bipartiti graphs G and a given integer k whether G has a edge geodetic set of cardinality at most k. A set M V(G) is called P3 set of G if all vertices of G have two neighbors in M. The P3 number of G is the minimum order of its P3 sets. We prove that it is NP-complete to decide for a given graphs G(diamond,odd-hole) free and a given integer k whether G has a P3 set of cardinality at most k.\",\"PeriodicalId\":315906,\"journal\":{\"name\":\"Anais do Encontro de Teoria da Computação (ETC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do Encontro de Teoria da Computação (ETC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/etc.2019.6403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Encontro de Teoria da Computação (ETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/etc.2019.6403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
For a nontrivial connected and simple graphs G= (V(G), E(G)), a set S E(G) is called edge geodetic set of G if every edge of G it’s in S or is contained in a geodesic joining some pair of edges in S. The edge geodetic number eds(G) of G is the minimum order of its edge geodetic sets. We prove that it is NP-complete to decide for a given bipartiti graphs G and a given integer k whether G has a edge geodetic set of cardinality at most k. A set M V(G) is called P3 set of G if all vertices of G have two neighbors in M. The P3 number of G is the minimum order of its P3 sets. We prove that it is NP-complete to decide for a given graphs G(diamond,odd-hole) free and a given integer k whether G has a P3 set of cardinality at most k.