径向基函数网络:鲁棒性和抗敌对实例能力

Jules Chenou, G. Hsieh, Tonya Fields
{"title":"径向基函数网络:鲁棒性和抗敌对实例能力","authors":"Jules Chenou, G. Hsieh, Tonya Fields","doi":"10.1109/CSCI49370.2019.00024","DOIUrl":null,"url":null,"abstract":"this work is a continuation of an ongoing effort to increase the robustness of the deep neural network, and thus mitigate possible adversarial examples. In our previous work, the emphasis was placed on denoising the input dataset by adding colored noise before processing. In that work, the evaluation made with the empirical robustness score, resulted in a 1% improvement on average for individual noise and a 3.74% improvement on average for ensemble noise. The aim of this paper is to demonstrate the effective robustness of a well-designed radial basis function neural network in tackling adversarial examples. With the empirical robustness as a metric, the results show a 72.5% increase with Fast Gradient Sign Method (FGSM) attack on the MNIST dataset in comparison to a simple deep network and a 6.4 % increase with FGSM on the CIFAR10 dataset.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Radial Basis Function Network: Its Robustness and Ability to Mitigate Adversarial Examples\",\"authors\":\"Jules Chenou, G. Hsieh, Tonya Fields\",\"doi\":\"10.1109/CSCI49370.2019.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"this work is a continuation of an ongoing effort to increase the robustness of the deep neural network, and thus mitigate possible adversarial examples. In our previous work, the emphasis was placed on denoising the input dataset by adding colored noise before processing. In that work, the evaluation made with the empirical robustness score, resulted in a 1% improvement on average for individual noise and a 3.74% improvement on average for ensemble noise. The aim of this paper is to demonstrate the effective robustness of a well-designed radial basis function neural network in tackling adversarial examples. With the empirical robustness as a metric, the results show a 72.5% increase with Fast Gradient Sign Method (FGSM) attack on the MNIST dataset in comparison to a simple deep network and a 6.4 % increase with FGSM on the CIFAR10 dataset.\",\"PeriodicalId\":103662,\"journal\":{\"name\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI49370.2019.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

这项工作是正在进行的努力的延续,以增加深度神经网络的鲁棒性,从而减少可能的对抗性示例。在我们之前的工作中,重点放在通过在处理前添加彩色噪声来对输入数据集进行去噪。在这项工作中,使用经验稳健性评分进行的评估导致单个噪声平均改善1%,整体噪声平均改善3.74%。本文的目的是证明一个设计良好的径向基函数神经网络在处理对抗性实例时的有效鲁棒性。以经验鲁棒性为衡量标准,结果显示,与简单的深度网络相比,快速梯度符号方法(FGSM)攻击在MNIST数据集上的效率提高了72.5%,在CIFAR10数据集上使用FGSM攻击的效率提高了6.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radial Basis Function Network: Its Robustness and Ability to Mitigate Adversarial Examples
this work is a continuation of an ongoing effort to increase the robustness of the deep neural network, and thus mitigate possible adversarial examples. In our previous work, the emphasis was placed on denoising the input dataset by adding colored noise before processing. In that work, the evaluation made with the empirical robustness score, resulted in a 1% improvement on average for individual noise and a 3.74% improvement on average for ensemble noise. The aim of this paper is to demonstrate the effective robustness of a well-designed radial basis function neural network in tackling adversarial examples. With the empirical robustness as a metric, the results show a 72.5% increase with Fast Gradient Sign Method (FGSM) attack on the MNIST dataset in comparison to a simple deep network and a 6.4 % increase with FGSM on the CIFAR10 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信