{"title":"灵活,超低功耗传感器节点通过可配置的有限状态机","authors":"J. P. Ramos, M. Verhelst","doi":"10.1109/ReCoSoC.2013.6581533","DOIUrl":null,"url":null,"abstract":"Due to the recent popularity of context-sensitive applications, there is a growing need for reliable, long-lifetime ubiquitous sensor nodes. The severe energy-efficiency requirements of these energy-scarce devices require complementing traditional circuit-level energy saving techniques, with architecture-level methods. Traditional approaches such as exploiting parallelism have however limited impact in sensor node processors, due to their control-dominated and event-based, irregular data processing workload patterns. Executing event-based tasks in specialized finite state machines relieves the on-board microcontroller, however, at the penalty of reduced post-manufacturing configurability. An architecture proposal for configurable finite state machines assisting sensor node processors is presented, which allows saving energy through task off-load while maintaining system flexibility. Simulations demonstrate 46% energy savings when compared to a sensor node that executes tasks in a microcontroller. This gain comes at relatively minor area overhead.","PeriodicalId":354964,"journal":{"name":"2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Flexible, ultra-low power sensor nodes through configurable finite state machines\",\"authors\":\"J. P. Ramos, M. Verhelst\",\"doi\":\"10.1109/ReCoSoC.2013.6581533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the recent popularity of context-sensitive applications, there is a growing need for reliable, long-lifetime ubiquitous sensor nodes. The severe energy-efficiency requirements of these energy-scarce devices require complementing traditional circuit-level energy saving techniques, with architecture-level methods. Traditional approaches such as exploiting parallelism have however limited impact in sensor node processors, due to their control-dominated and event-based, irregular data processing workload patterns. Executing event-based tasks in specialized finite state machines relieves the on-board microcontroller, however, at the penalty of reduced post-manufacturing configurability. An architecture proposal for configurable finite state machines assisting sensor node processors is presented, which allows saving energy through task off-load while maintaining system flexibility. Simulations demonstrate 46% energy savings when compared to a sensor node that executes tasks in a microcontroller. This gain comes at relatively minor area overhead.\",\"PeriodicalId\":354964,\"journal\":{\"name\":\"2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ReCoSoC.2013.6581533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReCoSoC.2013.6581533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flexible, ultra-low power sensor nodes through configurable finite state machines
Due to the recent popularity of context-sensitive applications, there is a growing need for reliable, long-lifetime ubiquitous sensor nodes. The severe energy-efficiency requirements of these energy-scarce devices require complementing traditional circuit-level energy saving techniques, with architecture-level methods. Traditional approaches such as exploiting parallelism have however limited impact in sensor node processors, due to their control-dominated and event-based, irregular data processing workload patterns. Executing event-based tasks in specialized finite state machines relieves the on-board microcontroller, however, at the penalty of reduced post-manufacturing configurability. An architecture proposal for configurable finite state machines assisting sensor node processors is presented, which allows saving energy through task off-load while maintaining system flexibility. Simulations demonstrate 46% energy savings when compared to a sensor node that executes tasks in a microcontroller. This gain comes at relatively minor area overhead.