利用高阶网络中的交叉阶模式和链接预测

Hao Tian, Shengmin Jin, R. Zafarani
{"title":"利用高阶网络中的交叉阶模式和链接预测","authors":"Hao Tian, Shengmin Jin, R. Zafarani","doi":"10.1109/ICDMW58026.2022.00156","DOIUrl":null,"url":null,"abstract":"With the demand to model the relationships among three or more entities, higher-order networks are now more widespread across various domains. Relationships such as multiauthor collaborations, co-appearance of keywords, and copurchases can be naturally modeled as higher-order networks. However, due to (1) computational complexity and (2) insufficient higher-order data, exploring higher-order networks is often limited to order-3 motifs (or triangles). To address these problems, we explore and quantify similarites among various network orders. Our goal is to build relationships between different network orders and to solve higher-order problems using lower-order information. Similarities between different orders are not comparable directly. Hence, we introduce a set of general cross-order similarities, and a measure: subedge rate. Our experiments on multiple real-world datasets demonstrate that most higher-order networks have considerable consistency as we move from higher-orders to lower-orders. Utilizing this discovery, we develop a new cross-order framework for higher-order link prediction method. These methods can predict higher-order links from lower-order edges, which cannot be attained by current higher-order methods that rely on data from a single order.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting Cross-Order Patterns and Link Prediction in Higher-Order Networks\",\"authors\":\"Hao Tian, Shengmin Jin, R. Zafarani\",\"doi\":\"10.1109/ICDMW58026.2022.00156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the demand to model the relationships among three or more entities, higher-order networks are now more widespread across various domains. Relationships such as multiauthor collaborations, co-appearance of keywords, and copurchases can be naturally modeled as higher-order networks. However, due to (1) computational complexity and (2) insufficient higher-order data, exploring higher-order networks is often limited to order-3 motifs (or triangles). To address these problems, we explore and quantify similarites among various network orders. Our goal is to build relationships between different network orders and to solve higher-order problems using lower-order information. Similarities between different orders are not comparable directly. Hence, we introduce a set of general cross-order similarities, and a measure: subedge rate. Our experiments on multiple real-world datasets demonstrate that most higher-order networks have considerable consistency as we move from higher-orders to lower-orders. Utilizing this discovery, we develop a new cross-order framework for higher-order link prediction method. These methods can predict higher-order links from lower-order edges, which cannot be attained by current higher-order methods that rely on data from a single order.\",\"PeriodicalId\":146687,\"journal\":{\"name\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW58026.2022.00156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于需要对三个或更多实体之间的关系进行建模,高阶网络现在在各个领域得到了更广泛的应用。多作者合作、关键词共同出现和共同购买等关系可以自然地建模为高阶网络。然而,由于(1)计算复杂性和(2)高阶数据不足,探索高阶网络通常仅限于3阶基元(或三角形)。为了解决这些问题,我们探索并量化了各种网络订单之间的相似性。我们的目标是建立不同网络阶数之间的关系,并使用低阶信息解决高阶问题。不同阶之间的相似性不能直接比较。因此,我们引入了一组一般的交叉阶相似度,以及一个度量:次级套期保值率。我们在多个真实世界数据集上的实验表明,当我们从高阶到低阶移动时,大多数高阶网络具有相当大的一致性。利用这一发现,我们开发了一种新的高阶链路预测方法的跨阶框架。这些方法可以从低阶边预测高阶链接,这是当前依赖于单阶数据的高阶方法无法实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting Cross-Order Patterns and Link Prediction in Higher-Order Networks
With the demand to model the relationships among three or more entities, higher-order networks are now more widespread across various domains. Relationships such as multiauthor collaborations, co-appearance of keywords, and copurchases can be naturally modeled as higher-order networks. However, due to (1) computational complexity and (2) insufficient higher-order data, exploring higher-order networks is often limited to order-3 motifs (or triangles). To address these problems, we explore and quantify similarites among various network orders. Our goal is to build relationships between different network orders and to solve higher-order problems using lower-order information. Similarities between different orders are not comparable directly. Hence, we introduce a set of general cross-order similarities, and a measure: subedge rate. Our experiments on multiple real-world datasets demonstrate that most higher-order networks have considerable consistency as we move from higher-orders to lower-orders. Utilizing this discovery, we develop a new cross-order framework for higher-order link prediction method. These methods can predict higher-order links from lower-order edges, which cannot be attained by current higher-order methods that rely on data from a single order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信