一种新的基于MPEG-7运动活动描述符的CBCD方法

R. Roopalakshmi, G. R. M. Reddy
{"title":"一种新的基于MPEG-7运动活动描述符的CBCD方法","authors":"R. Roopalakshmi, G. R. M. Reddy","doi":"10.1109/ISM.2011.36","DOIUrl":null,"url":null,"abstract":"Motion features contribute significant information about a video content. This paper highlights a novel CBCD (Content-Based Copy Detection) approach, by incorporating several motion activity features. First, we extract both temporal and spatial motion features to describe overall activity of a video sequence. Second, we combine these features in a feasible manner, to generate robust video fingerprints. Third, clustering based pruned search is utilized for similarity matching instead of direct searching of video fingerprints. The proposed system is tested on TRECVID-2007 data set and the results demonstrate the effectiveness of the proposed system against several transformations such as random noise, fast forward, pattern insertion, cropping and picture-inside-picture.","PeriodicalId":339410,"journal":{"name":"2011 IEEE International Symposium on Multimedia","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Novel CBCD Approach Using MPEG-7 Motion Activity Descriptors\",\"authors\":\"R. Roopalakshmi, G. R. M. Reddy\",\"doi\":\"10.1109/ISM.2011.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motion features contribute significant information about a video content. This paper highlights a novel CBCD (Content-Based Copy Detection) approach, by incorporating several motion activity features. First, we extract both temporal and spatial motion features to describe overall activity of a video sequence. Second, we combine these features in a feasible manner, to generate robust video fingerprints. Third, clustering based pruned search is utilized for similarity matching instead of direct searching of video fingerprints. The proposed system is tested on TRECVID-2007 data set and the results demonstrate the effectiveness of the proposed system against several transformations such as random noise, fast forward, pattern insertion, cropping and picture-inside-picture.\",\"PeriodicalId\":339410,\"journal\":{\"name\":\"2011 IEEE International Symposium on Multimedia\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2011.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2011.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

动作特征提供了关于视频内容的重要信息。本文重点介绍了一种新的CBCD(基于内容的复制检测)方法,该方法结合了几个运动活动特征。首先,我们提取时间和空间的运动特征来描述视频序列的整体活动。其次,我们将这些特征以可行的方式结合起来,生成鲁棒的视频指纹。第三,利用基于聚类的剪枝搜索代替直接搜索视频指纹进行相似度匹配。在TRECVID-2007数据集上对该系统进行了测试,结果证明了该系统对随机噪声、快进、图案插入、裁剪和图内图变换的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel CBCD Approach Using MPEG-7 Motion Activity Descriptors
Motion features contribute significant information about a video content. This paper highlights a novel CBCD (Content-Based Copy Detection) approach, by incorporating several motion activity features. First, we extract both temporal and spatial motion features to describe overall activity of a video sequence. Second, we combine these features in a feasible manner, to generate robust video fingerprints. Third, clustering based pruned search is utilized for similarity matching instead of direct searching of video fingerprints. The proposed system is tested on TRECVID-2007 data set and the results demonstrate the effectiveness of the proposed system against several transformations such as random noise, fast forward, pattern insertion, cropping and picture-inside-picture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信