识别文本分类中有问题的类

P. Roberts, J. Howroyd, Richard J. Mitchell, V. Ruiz
{"title":"识别文本分类中有问题的类","authors":"P. Roberts, J. Howroyd, Richard J. Mitchell, V. Ruiz","doi":"10.1109/UKRICIS.2010.5898142","DOIUrl":null,"url":null,"abstract":"Real-world text classification tasks often suffer from poor class structure with many overlapping classes and blurred boundaries. Training data pooled from multiple sources tend to be inconsistent and contain erroneous labelling, leading to poor performance of standard text classifiers. The classification of health service products to specialized procurement classes is used to examine and quantify the extent of these problems. A novel method is presented to analyze the labelled data by selectively merging classes where there is not enough information for the classifier to distinguish them. Initial results show the method can identify the most problematic classes, which can be used either as a focus to improve the training data or to merge classes to increase confidence in the predicted results of the classifier.","PeriodicalId":359942,"journal":{"name":"2010 IEEE 9th International Conference on Cyberntic Intelligent Systems","volume":"6 31","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identifying problematic classes in text classification\",\"authors\":\"P. Roberts, J. Howroyd, Richard J. Mitchell, V. Ruiz\",\"doi\":\"10.1109/UKRICIS.2010.5898142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-world text classification tasks often suffer from poor class structure with many overlapping classes and blurred boundaries. Training data pooled from multiple sources tend to be inconsistent and contain erroneous labelling, leading to poor performance of standard text classifiers. The classification of health service products to specialized procurement classes is used to examine and quantify the extent of these problems. A novel method is presented to analyze the labelled data by selectively merging classes where there is not enough information for the classifier to distinguish them. Initial results show the method can identify the most problematic classes, which can be used either as a focus to improve the training data or to merge classes to increase confidence in the predicted results of the classifier.\",\"PeriodicalId\":359942,\"journal\":{\"name\":\"2010 IEEE 9th International Conference on Cyberntic Intelligent Systems\",\"volume\":\"6 31\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 9th International Conference on Cyberntic Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKRICIS.2010.5898142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 9th International Conference on Cyberntic Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKRICIS.2010.5898142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现实世界的文本分类任务往往存在类结构不佳、类重叠多、边界模糊等问题。从多个来源汇集的训练数据往往不一致,并且包含错误的标记,导致标准文本分类器的性能较差。将卫生服务产品分类为专门的采购类别是用来检查和量化这些问题的程度。提出了一种新的方法来分析标记数据,有选择地合并类,其中没有足够的信息,分类器区分它们。初步结果表明,该方法可以识别出问题最大的类,这些类既可以作为改进训练数据的焦点,也可以用于合并类,以增加分类器预测结果的置信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying problematic classes in text classification
Real-world text classification tasks often suffer from poor class structure with many overlapping classes and blurred boundaries. Training data pooled from multiple sources tend to be inconsistent and contain erroneous labelling, leading to poor performance of standard text classifiers. The classification of health service products to specialized procurement classes is used to examine and quantify the extent of these problems. A novel method is presented to analyze the labelled data by selectively merging classes where there is not enough information for the classifier to distinguish them. Initial results show the method can identify the most problematic classes, which can be used either as a focus to improve the training data or to merge classes to increase confidence in the predicted results of the classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信