Bregman气泡聚类:一个鲁棒的、可扩展的框架,用于定位数据中的多个密集区域

Gunjan Gupta, Joydeep Ghosh
{"title":"Bregman气泡聚类:一个鲁棒的、可扩展的框架,用于定位数据中的多个密集区域","authors":"Gunjan Gupta, Joydeep Ghosh","doi":"10.1109/ICDM.2006.32","DOIUrl":null,"url":null,"abstract":"In traditional clustering, every data point is assigned to at least one cluster. On the other extreme, one class clustering algorithms proposed recently identify a single dense cluster and consider the rest of the data as irrelevant. However, in many problems, the relevant data forms multiple natural clusters. In this paper, we introduce the notion of Bregman bubbles and propose Bregman bubble clustering (BBC) that seeks k dense Bregman bubbles in the data. We also present a corresponding generative model, soft BBC, and show several connections with Bregman clustering, and with a one class clustering algorithm. Empirical results on various datasets show the effectiveness of our method.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Bregman Bubble Clustering: A Robust, Scalable Framework for Locating Multiple, Dense Regions in Data\",\"authors\":\"Gunjan Gupta, Joydeep Ghosh\",\"doi\":\"10.1109/ICDM.2006.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In traditional clustering, every data point is assigned to at least one cluster. On the other extreme, one class clustering algorithms proposed recently identify a single dense cluster and consider the rest of the data as irrelevant. However, in many problems, the relevant data forms multiple natural clusters. In this paper, we introduce the notion of Bregman bubbles and propose Bregman bubble clustering (BBC) that seeks k dense Bregman bubbles in the data. We also present a corresponding generative model, soft BBC, and show several connections with Bregman clustering, and with a one class clustering algorithm. Empirical results on various datasets show the effectiveness of our method.\",\"PeriodicalId\":356443,\"journal\":{\"name\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2006.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在传统聚类中,每个数据点至少分配给一个聚类。在另一个极端,最近提出的一类聚类算法识别一个单一的密集簇,并认为其余的数据是不相关的。然而,在许多问题中,相关数据会形成多个自然聚类。本文引入了Bregman气泡的概念,并提出了在数据中寻找k个密集Bregman气泡的Bregman气泡聚类方法(BBC)。我们还提出了一个相应的生成模型,软BBC,并展示了与Bregman聚类和一类聚类算法的几个联系。在不同数据集上的实证结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bregman Bubble Clustering: A Robust, Scalable Framework for Locating Multiple, Dense Regions in Data
In traditional clustering, every data point is assigned to at least one cluster. On the other extreme, one class clustering algorithms proposed recently identify a single dense cluster and consider the rest of the data as irrelevant. However, in many problems, the relevant data forms multiple natural clusters. In this paper, we introduce the notion of Bregman bubbles and propose Bregman bubble clustering (BBC) that seeks k dense Bregman bubbles in the data. We also present a corresponding generative model, soft BBC, and show several connections with Bregman clustering, and with a one class clustering algorithm. Empirical results on various datasets show the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信