利用LAPS找到预测运行

Suhrid Balakrishnan, D. Madigan
{"title":"利用LAPS找到预测运行","authors":"Suhrid Balakrishnan, D. Madigan","doi":"10.1109/ICDM.2007.84","DOIUrl":null,"url":null,"abstract":"We present an extension to the Lasso [6] for binary classification problems with ordered attributes. Inspired by the Fused Lasso [5] and the Group Lasso [7, 3] models, we aim to both discover and model runs (contiguous subgroups of the variables) that are highly predictive. We call the extended model LAPS (the Lasso with Attribute Partition Search). Such problems commonly arise in financial and medical domains, where predictors are time series variables, for example. This paper outlines the formulation of the problem, an algorithm to obtain the model coefficients and experiments showing applicability to practical problems of this type.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"265 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Finding Predictive Runs with LAPS\",\"authors\":\"Suhrid Balakrishnan, D. Madigan\",\"doi\":\"10.1109/ICDM.2007.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an extension to the Lasso [6] for binary classification problems with ordered attributes. Inspired by the Fused Lasso [5] and the Group Lasso [7, 3] models, we aim to both discover and model runs (contiguous subgroups of the variables) that are highly predictive. We call the extended model LAPS (the Lasso with Attribute Partition Search). Such problems commonly arise in financial and medical domains, where predictors are time series variables, for example. This paper outlines the formulation of the problem, an algorithm to obtain the model coefficients and experiments showing applicability to practical problems of this type.\",\"PeriodicalId\":233758,\"journal\":{\"name\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"volume\":\"265 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2007.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文对Lasso[6]算法进行了扩展,用于具有有序属性的二分类问题。受Fused Lasso b[5]和Group Lasso[7,3]模型的启发,我们的目标是发现和建模具有高度预测性的运行(变量的连续子组)。我们将扩展模型称为LAPS(带属性分区搜索的套索)。这类问题通常出现在金融和医疗领域,例如,这些领域的预测因子是时间序列变量。本文概述了该问题的表述、模型系数的求解算法以及适用于此类实际问题的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding Predictive Runs with LAPS
We present an extension to the Lasso [6] for binary classification problems with ordered attributes. Inspired by the Fused Lasso [5] and the Group Lasso [7, 3] models, we aim to both discover and model runs (contiguous subgroups of the variables) that are highly predictive. We call the extended model LAPS (the Lasso with Attribute Partition Search). Such problems commonly arise in financial and medical domains, where predictors are time series variables, for example. This paper outlines the formulation of the problem, an algorithm to obtain the model coefficients and experiments showing applicability to practical problems of this type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信