Catlin Ethridge, Lucas Splingaire, Holly Korte, U. Schnupf, Kazuhiro Manseki, T. Sugiura, S. Vafaei
{"title":"低温溶液法控制SnO2纳米颗粒生长","authors":"Catlin Ethridge, Lucas Splingaire, Holly Korte, U. Schnupf, Kazuhiro Manseki, T. Sugiura, S. Vafaei","doi":"10.1615/tfec2020.sol.033127","DOIUrl":null,"url":null,"abstract":"Perovskite solar cells, specifically using SnO 2 nanoparticles, have been extensively researched and are proving to be extremely promising in the field of renewable energy by increasing a solar cell’s overall efficiency and lowering the cost of production. In this study, an experiment was performed to synthesize SnO 2 nanoparticles over 8 days. Day 1 was the synthesis which included the mixing of water, tin (II) chloride, methanol, sodium carbonate and dimethylformamide and then heated in a water bath at 28 𝐶 𝑜 . Sampling of this solution started on day 4 of the experiment when sufficient particle growth was observed and stopped at day 8. Centrifuging, freezing, and freeze-drying were used for each sample to isolate the solid product. Transmission electron microscopy and X-ray powder diffraction was used to characterize the isolated nanoparticle. The results from the X-ray powder diffraction showed that each sample consisted of SnO 2 nanoparticles of different sizes. From the transmission electron microscopy on the samples showed that the overall size of the nanoparticles gradually increased during each additional synthesis day.","PeriodicalId":434777,"journal":{"name":"Proceeding of 5th Thermal and Fluids Engineering Conference (TFEC)","volume":"257 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth Control of SnO2 Nanoparticles Using a Low-Temperature Solution Process\",\"authors\":\"Catlin Ethridge, Lucas Splingaire, Holly Korte, U. Schnupf, Kazuhiro Manseki, T. Sugiura, S. Vafaei\",\"doi\":\"10.1615/tfec2020.sol.033127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perovskite solar cells, specifically using SnO 2 nanoparticles, have been extensively researched and are proving to be extremely promising in the field of renewable energy by increasing a solar cell’s overall efficiency and lowering the cost of production. In this study, an experiment was performed to synthesize SnO 2 nanoparticles over 8 days. Day 1 was the synthesis which included the mixing of water, tin (II) chloride, methanol, sodium carbonate and dimethylformamide and then heated in a water bath at 28 𝐶 𝑜 . Sampling of this solution started on day 4 of the experiment when sufficient particle growth was observed and stopped at day 8. Centrifuging, freezing, and freeze-drying were used for each sample to isolate the solid product. Transmission electron microscopy and X-ray powder diffraction was used to characterize the isolated nanoparticle. The results from the X-ray powder diffraction showed that each sample consisted of SnO 2 nanoparticles of different sizes. From the transmission electron microscopy on the samples showed that the overall size of the nanoparticles gradually increased during each additional synthesis day.\",\"PeriodicalId\":434777,\"journal\":{\"name\":\"Proceeding of 5th Thermal and Fluids Engineering Conference (TFEC)\",\"volume\":\"257 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of 5th Thermal and Fluids Engineering Conference (TFEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/tfec2020.sol.033127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of 5th Thermal and Fluids Engineering Conference (TFEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/tfec2020.sol.033127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Growth Control of SnO2 Nanoparticles Using a Low-Temperature Solution Process
Perovskite solar cells, specifically using SnO 2 nanoparticles, have been extensively researched and are proving to be extremely promising in the field of renewable energy by increasing a solar cell’s overall efficiency and lowering the cost of production. In this study, an experiment was performed to synthesize SnO 2 nanoparticles over 8 days. Day 1 was the synthesis which included the mixing of water, tin (II) chloride, methanol, sodium carbonate and dimethylformamide and then heated in a water bath at 28 𝐶 𝑜 . Sampling of this solution started on day 4 of the experiment when sufficient particle growth was observed and stopped at day 8. Centrifuging, freezing, and freeze-drying were used for each sample to isolate the solid product. Transmission electron microscopy and X-ray powder diffraction was used to characterize the isolated nanoparticle. The results from the X-ray powder diffraction showed that each sample consisted of SnO 2 nanoparticles of different sizes. From the transmission electron microscopy on the samples showed that the overall size of the nanoparticles gradually increased during each additional synthesis day.