基于矢量量化对比预测编码的变长对抗性音频合成

J. Nistal, Cyran Aouameur, S. Lattner, G. Richard
{"title":"基于矢量量化对比预测编码的变长对抗性音频合成","authors":"J. Nistal, Cyran Aouameur, S. Lattner, G. Richard","doi":"10.1109/WASPAA52581.2021.9632757","DOIUrl":null,"url":null,"abstract":"Influenced by the field of Computer Vision, Generative Adversarial Networks (GANs) are often adopted for the audio domain using fixed-size two-dimensional spectrogram representations as the “image data”. However, in the (musical) audio domain, it is often desired to generate output of variable duration. This paper presents VQCPC-GAN, an adversarial framework for synthesizing variable-length audio by exploiting Vector-Quantized Contrastive Predictive Coding (VQCPC). A sequence of VQCPC tokens extracted from real audio data serves as conditional input to a GAN architecture, providing step-wise time-dependent features of the generated content. The input noise $z$ (characteristic in adversarial architectures) remains fixed over time, ensuring temporal consistency of global features. We evaluate the proposed model by comparing a diverse set of metrics against various strong baselines. Results show that, even though the baselines score best, VQCPC-GAN achieves comparable performance even when generating variable-length audio. Numerous sound examples are provided in the accompanying website,11sonycslparis.github.io/vqcpc-gan.io and we release the code for reproducibility.22github.com/SonyCSLParis/vqcpc-gan","PeriodicalId":429900,"journal":{"name":"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)","volume":"10 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"VQCPC-GAN: Variable-Length Adversarial Audio Synthesis Using Vector-Quantized Contrastive Predictive Coding\",\"authors\":\"J. Nistal, Cyran Aouameur, S. Lattner, G. Richard\",\"doi\":\"10.1109/WASPAA52581.2021.9632757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Influenced by the field of Computer Vision, Generative Adversarial Networks (GANs) are often adopted for the audio domain using fixed-size two-dimensional spectrogram representations as the “image data”. However, in the (musical) audio domain, it is often desired to generate output of variable duration. This paper presents VQCPC-GAN, an adversarial framework for synthesizing variable-length audio by exploiting Vector-Quantized Contrastive Predictive Coding (VQCPC). A sequence of VQCPC tokens extracted from real audio data serves as conditional input to a GAN architecture, providing step-wise time-dependent features of the generated content. The input noise $z$ (characteristic in adversarial architectures) remains fixed over time, ensuring temporal consistency of global features. We evaluate the proposed model by comparing a diverse set of metrics against various strong baselines. Results show that, even though the baselines score best, VQCPC-GAN achieves comparable performance even when generating variable-length audio. Numerous sound examples are provided in the accompanying website,11sonycslparis.github.io/vqcpc-gan.io and we release the code for reproducibility.22github.com/SonyCSLParis/vqcpc-gan\",\"PeriodicalId\":429900,\"journal\":{\"name\":\"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)\",\"volume\":\"10 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WASPAA52581.2021.9632757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASPAA52581.2021.9632757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

受计算机视觉领域的影响,音频领域通常采用生成对抗网络(GANs),使用固定大小的二维谱图表示作为“图像数据”。然而,在(音乐)音频领域,通常需要生成可变持续时间的输出。本文提出了一种利用矢量量化对比预测编码(Vector-Quantized contrast Predictive Coding, VQCPC)合成变长音频的对抗框架VQCPC- gan。从真实音频数据中提取的VQCPC令牌序列作为GAN架构的条件输入,提供生成内容的逐步时间相关特征。输入噪声$z$(对抗性架构中的特征)随着时间的推移保持固定,确保全局特征的时间一致性。我们通过比较不同的度量标准与各种强基线来评估所提出的模型。结果表明,即使基线得分最好,VQCPC-GAN即使在生成可变长度音频时也能达到相当的性能。随附的网站11sonycslparis.github.io/vqcpc-gan提供了许多声音示例。我们发布了reproducibility.22github.com/SonyCSLParis/vqcpc-gan的代码
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VQCPC-GAN: Variable-Length Adversarial Audio Synthesis Using Vector-Quantized Contrastive Predictive Coding
Influenced by the field of Computer Vision, Generative Adversarial Networks (GANs) are often adopted for the audio domain using fixed-size two-dimensional spectrogram representations as the “image data”. However, in the (musical) audio domain, it is often desired to generate output of variable duration. This paper presents VQCPC-GAN, an adversarial framework for synthesizing variable-length audio by exploiting Vector-Quantized Contrastive Predictive Coding (VQCPC). A sequence of VQCPC tokens extracted from real audio data serves as conditional input to a GAN architecture, providing step-wise time-dependent features of the generated content. The input noise $z$ (characteristic in adversarial architectures) remains fixed over time, ensuring temporal consistency of global features. We evaluate the proposed model by comparing a diverse set of metrics against various strong baselines. Results show that, even though the baselines score best, VQCPC-GAN achieves comparable performance even when generating variable-length audio. Numerous sound examples are provided in the accompanying website,11sonycslparis.github.io/vqcpc-gan.io and we release the code for reproducibility.22github.com/SonyCSLParis/vqcpc-gan
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信