直方图上半群核的随机拉普拉斯特征映射

Jiyan Yang, Vikas Sindhwani, Quanfu Fan, H. Avron, Michael W. Mahoney
{"title":"直方图上半群核的随机拉普拉斯特征映射","authors":"Jiyan Yang, Vikas Sindhwani, Quanfu Fan, H. Avron, Michael W. Mahoney","doi":"10.1109/CVPR.2014.129","DOIUrl":null,"url":null,"abstract":"With the goal of accelerating the training and testing complexity of nonlinear kernel methods, several recent papers have proposed explicit embeddings of the input data into low-dimensional feature spaces, where fast linear methods can instead be used to generate approximate solutions. Analogous to random Fourier feature maps to approximate shift-invariant kernels, such as the Gaussian kernel, on Rd, we develop a new randomized technique called random Laplace features, to approximate a family of kernel functions adapted to the semigroup structure of R+d. This is the natural algebraic structure on the set of histograms and other non-negative data representations. We provide theoretical results on the uniform convergence of random Laplace features. Empirical analyses on image classification and surveillance event detection tasks demonstrate the attractiveness of using random Laplace features relative to several other feature maps proposed in the literature.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Random Laplace Feature Maps for Semigroup Kernels on Histograms\",\"authors\":\"Jiyan Yang, Vikas Sindhwani, Quanfu Fan, H. Avron, Michael W. Mahoney\",\"doi\":\"10.1109/CVPR.2014.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the goal of accelerating the training and testing complexity of nonlinear kernel methods, several recent papers have proposed explicit embeddings of the input data into low-dimensional feature spaces, where fast linear methods can instead be used to generate approximate solutions. Analogous to random Fourier feature maps to approximate shift-invariant kernels, such as the Gaussian kernel, on Rd, we develop a new randomized technique called random Laplace features, to approximate a family of kernel functions adapted to the semigroup structure of R+d. This is the natural algebraic structure on the set of histograms and other non-negative data representations. We provide theoretical results on the uniform convergence of random Laplace features. Empirical analyses on image classification and surveillance event detection tasks demonstrate the attractiveness of using random Laplace features relative to several other feature maps proposed in the literature.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

为了加速非线性核方法的训练和测试复杂性,最近的几篇论文提出了将输入数据显式嵌入到低维特征空间中,在低维特征空间中,可以使用快速线性方法来生成近似解。类似于随机傅立叶特征映射到近似移不变核,如高斯核,在Rd上,我们开发了一种新的随机化技术,称为随机拉普拉斯特征,以近似一组核函数适应于R+d的半群结构。这是直方图和其他非负数据表示集合上的自然代数结构。我们给出了随机拉普拉斯特征一致收敛的理论结果。对图像分类和监控事件检测任务的实证分析表明,相对于文献中提出的其他几种特征映射,使用随机拉普拉斯特征具有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Laplace Feature Maps for Semigroup Kernels on Histograms
With the goal of accelerating the training and testing complexity of nonlinear kernel methods, several recent papers have proposed explicit embeddings of the input data into low-dimensional feature spaces, where fast linear methods can instead be used to generate approximate solutions. Analogous to random Fourier feature maps to approximate shift-invariant kernels, such as the Gaussian kernel, on Rd, we develop a new randomized technique called random Laplace features, to approximate a family of kernel functions adapted to the semigroup structure of R+d. This is the natural algebraic structure on the set of histograms and other non-negative data representations. We provide theoretical results on the uniform convergence of random Laplace features. Empirical analyses on image classification and surveillance event detection tasks demonstrate the attractiveness of using random Laplace features relative to several other feature maps proposed in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信