使用深度学习和迁移学习的皮肤癌分类

K. Hosny, M. A. Kassem, Mohamed M. Foaud
{"title":"使用深度学习和迁移学习的皮肤癌分类","authors":"K. Hosny, M. A. Kassem, Mohamed M. Foaud","doi":"10.1109/CIBEC.2018.8641762","DOIUrl":null,"url":null,"abstract":"Skin cancer, specially melanoma is one of most deadly diseases. In the color images of skin, there is a high similarity between different skin lesion like melanoma and nevus, which increase the difficulty of the detection and diagnosis. A reliable automated system for skin lesion classification is essential for early detection to save effort, time and human life. In this paper, an automated skin lesion classification method is proposed. In this method, a pre-trained deep learning network and transfer learning are utilized. In addition to fine-tuning and data augmentation, the transfer learning is applied to AlexNet by replacing the last layer by a softmax to classify three different lesions (melanoma, common nevus and atypical nevus). The proposed model is trained and tested using the ph2 dataset. The well-known quantative measures, accuracy, sensitivity, specificity, and precision are used in evaluating the performance of the proposed method where the obtained values of these measures are 98.61%, 98.33%, 98.93%, and 97.73%, respectively. The performance of the proposed method is compared with the existing methods where the classification rate of the proposed method outperformed the performance of the existing methods.","PeriodicalId":407809,"journal":{"name":"2018 9th Cairo International Biomedical Engineering Conference (CIBEC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"122","resultStr":"{\"title\":\"Skin Cancer Classification using Deep Learning and Transfer Learning\",\"authors\":\"K. Hosny, M. A. Kassem, Mohamed M. Foaud\",\"doi\":\"10.1109/CIBEC.2018.8641762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skin cancer, specially melanoma is one of most deadly diseases. In the color images of skin, there is a high similarity between different skin lesion like melanoma and nevus, which increase the difficulty of the detection and diagnosis. A reliable automated system for skin lesion classification is essential for early detection to save effort, time and human life. In this paper, an automated skin lesion classification method is proposed. In this method, a pre-trained deep learning network and transfer learning are utilized. In addition to fine-tuning and data augmentation, the transfer learning is applied to AlexNet by replacing the last layer by a softmax to classify three different lesions (melanoma, common nevus and atypical nevus). The proposed model is trained and tested using the ph2 dataset. The well-known quantative measures, accuracy, sensitivity, specificity, and precision are used in evaluating the performance of the proposed method where the obtained values of these measures are 98.61%, 98.33%, 98.93%, and 97.73%, respectively. The performance of the proposed method is compared with the existing methods where the classification rate of the proposed method outperformed the performance of the existing methods.\",\"PeriodicalId\":407809,\"journal\":{\"name\":\"2018 9th Cairo International Biomedical Engineering Conference (CIBEC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"122\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 9th Cairo International Biomedical Engineering Conference (CIBEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBEC.2018.8641762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 9th Cairo International Biomedical Engineering Conference (CIBEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBEC.2018.8641762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 122

摘要

皮肤癌,尤其是黑色素瘤是最致命的疾病之一。在皮肤彩色图像中,黑色素瘤和痣等不同的皮肤病变具有较高的相似性,增加了检测和诊断的难度。一个可靠的自动皮肤病变分类系统是必不可少的早期发现,以节省精力,时间和人的生命。本文提出了一种皮肤损伤自动分类方法。该方法利用了预训练的深度学习网络和迁移学习。除了微调和数据增强之外,迁移学习应用于AlexNet,通过用softmax替换最后一层来分类三种不同的病变(黑色素瘤,普通痣和非典型痣)。使用ph2数据集对所提出的模型进行了训练和测试。在评价该方法的性能时,使用了众所周知的定量指标,准确度、灵敏度、特异性和精密度,这些指标的获得值分别为98.61%、98.33%、98.93%和97.73%。将所提方法的性能与现有方法进行比较,所提方法的分类率优于现有方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Skin Cancer Classification using Deep Learning and Transfer Learning
Skin cancer, specially melanoma is one of most deadly diseases. In the color images of skin, there is a high similarity between different skin lesion like melanoma and nevus, which increase the difficulty of the detection and diagnosis. A reliable automated system for skin lesion classification is essential for early detection to save effort, time and human life. In this paper, an automated skin lesion classification method is proposed. In this method, a pre-trained deep learning network and transfer learning are utilized. In addition to fine-tuning and data augmentation, the transfer learning is applied to AlexNet by replacing the last layer by a softmax to classify three different lesions (melanoma, common nevus and atypical nevus). The proposed model is trained and tested using the ph2 dataset. The well-known quantative measures, accuracy, sensitivity, specificity, and precision are used in evaluating the performance of the proposed method where the obtained values of these measures are 98.61%, 98.33%, 98.93%, and 97.73%, respectively. The performance of the proposed method is compared with the existing methods where the classification rate of the proposed method outperformed the performance of the existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信