通过静态渐变凸轮计算减少特征重要性可视化的开销

Ashwin Bhat, A. Raychowdhury
{"title":"通过静态渐变凸轮计算减少特征重要性可视化的开销","authors":"Ashwin Bhat, A. Raychowdhury","doi":"10.1109/AICAS57966.2023.10168594","DOIUrl":null,"url":null,"abstract":"Explainable AI (XAI) methods provide insights into the operation of black-box Deep Neural Network (DNN) models. GradCAM, an XAI algorithm, provides an explanation by highlighting regions in the input feature space that were relevant to the model’s output. It involves a gradient computation step that adds a significant overhead compared to inference and hinders providing explanations to end-users. In this work, we identify the root cause of the problem to be the dynamic run-time automatic differentiation. To overcome this issue, we propose to offload the gradient computation step to compile time via analytic evaluation. We validate the idea by designing an FPGA implementation of GradCAM that schedules the entire computation graph statically. For a TinyML ResNet18 model, we achieve a reduction in the explanation generation overhead from > 2× using software frameworks on CPU/GPU systems to < 0.01× on the FPGA using our designed hardware and static scheduling.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing Overhead of Feature Importance Visualization via Static GradCAM Computation\",\"authors\":\"Ashwin Bhat, A. Raychowdhury\",\"doi\":\"10.1109/AICAS57966.2023.10168594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Explainable AI (XAI) methods provide insights into the operation of black-box Deep Neural Network (DNN) models. GradCAM, an XAI algorithm, provides an explanation by highlighting regions in the input feature space that were relevant to the model’s output. It involves a gradient computation step that adds a significant overhead compared to inference and hinders providing explanations to end-users. In this work, we identify the root cause of the problem to be the dynamic run-time automatic differentiation. To overcome this issue, we propose to offload the gradient computation step to compile time via analytic evaluation. We validate the idea by designing an FPGA implementation of GradCAM that schedules the entire computation graph statically. For a TinyML ResNet18 model, we achieve a reduction in the explanation generation overhead from > 2× using software frameworks on CPU/GPU systems to < 0.01× on the FPGA using our designed hardware and static scheduling.\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可解释的人工智能(XAI)方法为黑盒深度神经网络(DNN)模型的操作提供了见解。GradCAM是一种XAI算法,它通过突出显示输入特征空间中与模型输出相关的区域来提供解释。它涉及到一个梯度计算步骤,与推理相比增加了很大的开销,并且阻碍了向最终用户提供解释。在这项工作中,我们确定了问题的根本原因是动态运行时自动区分。为了克服这一问题,我们建议通过分析计算将梯度计算步骤卸载到编译时间。我们通过设计GradCAM的FPGA实现来验证这个想法,该FPGA实现静态地调度整个计算图。对于TinyML ResNet18模型,我们在CPU/GPU系统上使用软件框架将解释生成开销从> 2x减少到使用我们设计的硬件和静态调度的FPGA上的< 0.01 x。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing Overhead of Feature Importance Visualization via Static GradCAM Computation
Explainable AI (XAI) methods provide insights into the operation of black-box Deep Neural Network (DNN) models. GradCAM, an XAI algorithm, provides an explanation by highlighting regions in the input feature space that were relevant to the model’s output. It involves a gradient computation step that adds a significant overhead compared to inference and hinders providing explanations to end-users. In this work, we identify the root cause of the problem to be the dynamic run-time automatic differentiation. To overcome this issue, we propose to offload the gradient computation step to compile time via analytic evaluation. We validate the idea by designing an FPGA implementation of GradCAM that schedules the entire computation graph statically. For a TinyML ResNet18 model, we achieve a reduction in the explanation generation overhead from > 2× using software frameworks on CPU/GPU systems to < 0.01× on the FPGA using our designed hardware and static scheduling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信