{"title":"基于阿尔及利亚运营商电话多语言情感分析的业务决策支持系统","authors":"B. Klouche, S. Benslimane, Sakina Rim Bennabi","doi":"10.4018/ijtd.2020040105","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is one of the recent areas of emerging research in the classification of sentiment polarity and text mining, particularly with the considerable number of opinions available on social media. The Algerian Operator Telephone Ooredoo, as other operators, deploys in its new strategy to conquer new customers, by exploiting their opinions through a sentiments analysis. The purpose of this work is to set up a system called “Ooredoo Rayek”, whose objective is to collect, transliterate, translate and classify the textual data expressed by the Ooredoo operator's customers. This article developed a set of rules allowing the transliteration from Algerian Arabizi to Algerian dialect. Furthermore, the authors used Naïve Bayes (NB) and (Support Vector Machine) SVM classifiers to assign polarity tags to Facebook comments from the official pages of Ooredoo written in multilingual and multi-dialect context. Experimental results show that the system obtains good performance with 83% of accuracy.","PeriodicalId":208567,"journal":{"name":"Int. J. Technol. Diffusion","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ooredoo Rayek: A Business Decision Support System Based on Multi-Language Sentiment Analysis of Algerian Operator Telephones\",\"authors\":\"B. Klouche, S. Benslimane, Sakina Rim Bennabi\",\"doi\":\"10.4018/ijtd.2020040105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis is one of the recent areas of emerging research in the classification of sentiment polarity and text mining, particularly with the considerable number of opinions available on social media. The Algerian Operator Telephone Ooredoo, as other operators, deploys in its new strategy to conquer new customers, by exploiting their opinions through a sentiments analysis. The purpose of this work is to set up a system called “Ooredoo Rayek”, whose objective is to collect, transliterate, translate and classify the textual data expressed by the Ooredoo operator's customers. This article developed a set of rules allowing the transliteration from Algerian Arabizi to Algerian dialect. Furthermore, the authors used Naïve Bayes (NB) and (Support Vector Machine) SVM classifiers to assign polarity tags to Facebook comments from the official pages of Ooredoo written in multilingual and multi-dialect context. Experimental results show that the system obtains good performance with 83% of accuracy.\",\"PeriodicalId\":208567,\"journal\":{\"name\":\"Int. J. Technol. Diffusion\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Technol. Diffusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijtd.2020040105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Technol. Diffusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijtd.2020040105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ooredoo Rayek: A Business Decision Support System Based on Multi-Language Sentiment Analysis of Algerian Operator Telephones
Sentiment analysis is one of the recent areas of emerging research in the classification of sentiment polarity and text mining, particularly with the considerable number of opinions available on social media. The Algerian Operator Telephone Ooredoo, as other operators, deploys in its new strategy to conquer new customers, by exploiting their opinions through a sentiments analysis. The purpose of this work is to set up a system called “Ooredoo Rayek”, whose objective is to collect, transliterate, translate and classify the textual data expressed by the Ooredoo operator's customers. This article developed a set of rules allowing the transliteration from Algerian Arabizi to Algerian dialect. Furthermore, the authors used Naïve Bayes (NB) and (Support Vector Machine) SVM classifiers to assign polarity tags to Facebook comments from the official pages of Ooredoo written in multilingual and multi-dialect context. Experimental results show that the system obtains good performance with 83% of accuracy.