Ruijing Yang, Shujun Tong, Miguel Bordallo López, Elhocine Boutellaa, Jinye Peng, Xiaoyi Feng, A. Hadid
{"title":"基于时空局部描述符的面部视频疼痛评估","authors":"Ruijing Yang, Shujun Tong, Miguel Bordallo López, Elhocine Boutellaa, Jinye Peng, Xiaoyi Feng, A. Hadid","doi":"10.1109/IPTA.2016.7820930","DOIUrl":null,"url":null,"abstract":"Automatically recognizing pain from spontaneous facial expression is of increased attention, since it can provide for a direct and relatively objective indication to pain experience. Until now, most of the existing works have focused on analyzing pain from individual images or video-frames, hence discarding the spatio-temporal information that can be useful in the continuous assessment of pain. In this context, this paper investigates and quantifies for the first time the role of the spatio-temporal information in pain assessment by comparing the performance of several baseline local descriptors used in their traditional spatial form against their spatio-temporal counterparts that take into account the video dynamics. For this purpose, we perform extensive experiments on two benchmark datasets. Our results indicate that using spatio-temporal information to classify video-sequences consistently shows superior performance when compared against the one obtained using only static information.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"On pain assessment from facial videos using spatio-temporal local descriptors\",\"authors\":\"Ruijing Yang, Shujun Tong, Miguel Bordallo López, Elhocine Boutellaa, Jinye Peng, Xiaoyi Feng, A. Hadid\",\"doi\":\"10.1109/IPTA.2016.7820930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatically recognizing pain from spontaneous facial expression is of increased attention, since it can provide for a direct and relatively objective indication to pain experience. Until now, most of the existing works have focused on analyzing pain from individual images or video-frames, hence discarding the spatio-temporal information that can be useful in the continuous assessment of pain. In this context, this paper investigates and quantifies for the first time the role of the spatio-temporal information in pain assessment by comparing the performance of several baseline local descriptors used in their traditional spatial form against their spatio-temporal counterparts that take into account the video dynamics. For this purpose, we perform extensive experiments on two benchmark datasets. Our results indicate that using spatio-temporal information to classify video-sequences consistently shows superior performance when compared against the one obtained using only static information.\",\"PeriodicalId\":123429,\"journal\":{\"name\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2016.7820930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7820930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On pain assessment from facial videos using spatio-temporal local descriptors
Automatically recognizing pain from spontaneous facial expression is of increased attention, since it can provide for a direct and relatively objective indication to pain experience. Until now, most of the existing works have focused on analyzing pain from individual images or video-frames, hence discarding the spatio-temporal information that can be useful in the continuous assessment of pain. In this context, this paper investigates and quantifies for the first time the role of the spatio-temporal information in pain assessment by comparing the performance of several baseline local descriptors used in their traditional spatial form against their spatio-temporal counterparts that take into account the video dynamics. For this purpose, we perform extensive experiments on two benchmark datasets. Our results indicate that using spatio-temporal information to classify video-sequences consistently shows superior performance when compared against the one obtained using only static information.