PLI:使用自定义聚类索引增强实时数据库

J. Wagner, A. Rasin, Dai Hai Ton That, T. Malik
{"title":"PLI:使用自定义聚类索引增强实时数据库","authors":"J. Wagner, A. Rasin, Dai Hai Ton That, T. Malik","doi":"10.1145/3085504.3085582","DOIUrl":null,"url":null,"abstract":"RDBMSes only support one clustered index per database table that can speed up query processing. Database applications, that continually ingest large amounts of data, perceive slow query response times to long downtimes, as the clustered index ordering must be strictly maintained. In this paper, we show that application slowdown or downtime, however, can often be avoided if database systems expose the physical location of attributes that are completely or approximately clustered. Towards this, we propose PLI, a physical location index, constructed by determining the physical ordering of an attribute and creating approximately sorted buckets that map physical ordering with attribute values in a live database. To use a PLI incoming SQL queries are simply rewritten with physical ordering information for that particular database. Experiments show queries with the PLI index significantly outperform queries using native unclustered (secondary) indexes, while the index itself requires a much lower maintenance overheads when compared to native clustered indexes.","PeriodicalId":431308,"journal":{"name":"Proceedings of the 29th International Conference on Scientific and Statistical Database Management","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"PLI: Augmenting Live Databases with Custom Clustered Indexes\",\"authors\":\"J. Wagner, A. Rasin, Dai Hai Ton That, T. Malik\",\"doi\":\"10.1145/3085504.3085582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RDBMSes only support one clustered index per database table that can speed up query processing. Database applications, that continually ingest large amounts of data, perceive slow query response times to long downtimes, as the clustered index ordering must be strictly maintained. In this paper, we show that application slowdown or downtime, however, can often be avoided if database systems expose the physical location of attributes that are completely or approximately clustered. Towards this, we propose PLI, a physical location index, constructed by determining the physical ordering of an attribute and creating approximately sorted buckets that map physical ordering with attribute values in a live database. To use a PLI incoming SQL queries are simply rewritten with physical ordering information for that particular database. Experiments show queries with the PLI index significantly outperform queries using native unclustered (secondary) indexes, while the index itself requires a much lower maintenance overheads when compared to native clustered indexes.\",\"PeriodicalId\":431308,\"journal\":{\"name\":\"Proceedings of the 29th International Conference on Scientific and Statistical Database Management\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3085504.3085582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3085504.3085582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

rdbms只支持每个数据库表一个集群索引,这可以加快查询处理速度。不断摄取大量数据的数据库应用程序,由于必须严格维护聚类索引排序,因此查询响应时间较慢,停机时间较长。在本文中,我们展示了如果数据库系统公开完全或近似集群化的属性的物理位置,通常可以避免应用程序减速或停机。为此,我们提出了PLI,这是一种物理位置索引,通过确定属性的物理顺序并创建近似排序的桶来构建,这些桶将物理顺序与实时数据库中的属性值相映射。要使用PLI,只需用特定数据库的物理排序信息重写传入的SQL查询。实验表明,使用PLI索引的查询明显优于使用原生非聚类(二级)索引的查询,而与原生聚类索引相比,索引本身需要的维护开销要低得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PLI: Augmenting Live Databases with Custom Clustered Indexes
RDBMSes only support one clustered index per database table that can speed up query processing. Database applications, that continually ingest large amounts of data, perceive slow query response times to long downtimes, as the clustered index ordering must be strictly maintained. In this paper, we show that application slowdown or downtime, however, can often be avoided if database systems expose the physical location of attributes that are completely or approximately clustered. Towards this, we propose PLI, a physical location index, constructed by determining the physical ordering of an attribute and creating approximately sorted buckets that map physical ordering with attribute values in a live database. To use a PLI incoming SQL queries are simply rewritten with physical ordering information for that particular database. Experiments show queries with the PLI index significantly outperform queries using native unclustered (secondary) indexes, while the index itself requires a much lower maintenance overheads when compared to native clustered indexes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信