分裂编织卷积:在gpu上实现转置和扩展卷积的密集评估

Arjun Menon Vadakkeveedu, Debabrata Mandal, Pradeep Ramachandran, N. Chandrachoodan
{"title":"分裂编织卷积:在gpu上实现转置和扩展卷积的密集评估","authors":"Arjun Menon Vadakkeveedu, Debabrata Mandal, Pradeep Ramachandran, N. Chandrachoodan","doi":"10.1109/HiPC56025.2022.00014","DOIUrl":null,"url":null,"abstract":"Transpose convolutions occur in several image-based neural network applications, especially those involving segmentation or image generation. Unlike regular (forward) convolutions, they result in data access and computation patterns that are less regular, and generally have poorer performance when implemented in software. We present split-knit convolution (SKConv) – a technique to replace transpose convolutions with multiple regular convolutions followed by interleaving. We show how existing software frameworks for GPU implementation of deep neural networks can be adapted to realize this computation, and compare against the standard techniques used by such frameworks.","PeriodicalId":119363,"journal":{"name":"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Split-Knit Convolution: Enabling Dense Evaluation of Transpose and Dilated Convolutions on GPUs\",\"authors\":\"Arjun Menon Vadakkeveedu, Debabrata Mandal, Pradeep Ramachandran, N. Chandrachoodan\",\"doi\":\"10.1109/HiPC56025.2022.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transpose convolutions occur in several image-based neural network applications, especially those involving segmentation or image generation. Unlike regular (forward) convolutions, they result in data access and computation patterns that are less regular, and generally have poorer performance when implemented in software. We present split-knit convolution (SKConv) – a technique to replace transpose convolutions with multiple regular convolutions followed by interleaving. We show how existing software frameworks for GPU implementation of deep neural networks can be adapted to realize this computation, and compare against the standard techniques used by such frameworks.\",\"PeriodicalId\":119363,\"journal\":{\"name\":\"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HiPC56025.2022.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC56025.2022.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

转置卷积出现在许多基于图像的神经网络应用中,特别是那些涉及分割或图像生成的应用。与常规(前向)卷积不同,它们导致的数据访问和计算模式不那么规则,并且在软件中实现时通常性能较差。我们提出了分裂编织卷积(SKConv) -一种用多个规则卷积替换转置卷积的技术,然后进行交错。我们展示了如何适应现有的GPU实现深度神经网络的软件框架来实现这种计算,并与这些框架使用的标准技术进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Split-Knit Convolution: Enabling Dense Evaluation of Transpose and Dilated Convolutions on GPUs
Transpose convolutions occur in several image-based neural network applications, especially those involving segmentation or image generation. Unlike regular (forward) convolutions, they result in data access and computation patterns that are less regular, and generally have poorer performance when implemented in software. We present split-knit convolution (SKConv) – a technique to replace transpose convolutions with multiple regular convolutions followed by interleaving. We show how existing software frameworks for GPU implementation of deep neural networks can be adapted to realize this computation, and compare against the standard techniques used by such frameworks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信