{"title":"代数相干合流与高球状Kleene代数","authors":"Cameron Calk, É. Goubault, P. Malbos, G. Struth","doi":"10.46298/lmcs-18(4:9)2022","DOIUrl":null,"url":null,"abstract":"We extend the formalisation of confluence results in Kleene algebras to a\nformalisation of coherent confluence proofs. For this, we introduce the\nstructure of higher globular Kleene algebra, a higher-dimensional\ngeneralisation of modal and concurrent Kleene algebra. We calculate a coherent\nChurch-Rosser theorem and a coherent Newman's lemma in higher Kleene algebras\nby equational reasoning. We instantiate these results in the context of higher\nrewriting systems modelled by polygraphs.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Algebraic coherent confluence and higher globular Kleene algebras\",\"authors\":\"Cameron Calk, É. Goubault, P. Malbos, G. Struth\",\"doi\":\"10.46298/lmcs-18(4:9)2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the formalisation of confluence results in Kleene algebras to a\\nformalisation of coherent confluence proofs. For this, we introduce the\\nstructure of higher globular Kleene algebra, a higher-dimensional\\ngeneralisation of modal and concurrent Kleene algebra. We calculate a coherent\\nChurch-Rosser theorem and a coherent Newman's lemma in higher Kleene algebras\\nby equational reasoning. We instantiate these results in the context of higher\\nrewriting systems modelled by polygraphs.\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-18(4:9)2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-18(4:9)2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Algebraic coherent confluence and higher globular Kleene algebras
We extend the formalisation of confluence results in Kleene algebras to a
formalisation of coherent confluence proofs. For this, we introduce the
structure of higher globular Kleene algebra, a higher-dimensional
generalisation of modal and concurrent Kleene algebra. We calculate a coherent
Church-Rosser theorem and a coherent Newman's lemma in higher Kleene algebras
by equational reasoning. We instantiate these results in the context of higher
rewriting systems modelled by polygraphs.