代数相干合流与高球状Kleene代数

Cameron Calk, É. Goubault, P. Malbos, G. Struth
{"title":"代数相干合流与高球状Kleene代数","authors":"Cameron Calk, É. Goubault, P. Malbos, G. Struth","doi":"10.46298/lmcs-18(4:9)2022","DOIUrl":null,"url":null,"abstract":"We extend the formalisation of confluence results in Kleene algebras to a\nformalisation of coherent confluence proofs. For this, we introduce the\nstructure of higher globular Kleene algebra, a higher-dimensional\ngeneralisation of modal and concurrent Kleene algebra. We calculate a coherent\nChurch-Rosser theorem and a coherent Newman's lemma in higher Kleene algebras\nby equational reasoning. We instantiate these results in the context of higher\nrewriting systems modelled by polygraphs.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Algebraic coherent confluence and higher globular Kleene algebras\",\"authors\":\"Cameron Calk, É. Goubault, P. Malbos, G. Struth\",\"doi\":\"10.46298/lmcs-18(4:9)2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the formalisation of confluence results in Kleene algebras to a\\nformalisation of coherent confluence proofs. For this, we introduce the\\nstructure of higher globular Kleene algebra, a higher-dimensional\\ngeneralisation of modal and concurrent Kleene algebra. We calculate a coherent\\nChurch-Rosser theorem and a coherent Newman's lemma in higher Kleene algebras\\nby equational reasoning. We instantiate these results in the context of higher\\nrewriting systems modelled by polygraphs.\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-18(4:9)2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-18(4:9)2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

将Kleene代数中合流结果的形式化推广到相干合流证明的形式化。为此,我们引入了高球Kleene代数的结构,它是模态Kleene代数和并发Kleene代数的高维推广。用方程推理的方法计算了高等Kleene代数中的一个相干church - rosser定理和一个相干Newman引理。我们在由测谎仪建模的高级重写系统的背景下实例化这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic coherent confluence and higher globular Kleene algebras
We extend the formalisation of confluence results in Kleene algebras to a formalisation of coherent confluence proofs. For this, we introduce the structure of higher globular Kleene algebra, a higher-dimensional generalisation of modal and concurrent Kleene algebra. We calculate a coherent Church-Rosser theorem and a coherent Newman's lemma in higher Kleene algebras by equational reasoning. We instantiate these results in the context of higher rewriting systems modelled by polygraphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信