{"title":"线性周期和可分辨的局部参数","authors":"J. Smith","doi":"10.1142/S179304212150024X","DOIUrl":null,"url":null,"abstract":"Let $F$ be a nonarchimedean local field of characteristic zero and odd residual characteristic. Let $X$ be the $p$-adic symmetric space $X = H \\backslash G$, where $G = \\mathbf{GL}_{2n}(F)$ and $H = \\mathbf{GL}_n(F) \\times \\mathbf{GL}_n(F)$. We verify a conjecture of Sakellaridis and Venkatesh on the Langlands parameters of certain representations in the discrete spectrum of $X$.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Linear periods and distinguished local parameters\",\"authors\":\"J. Smith\",\"doi\":\"10.1142/S179304212150024X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $F$ be a nonarchimedean local field of characteristic zero and odd residual characteristic. Let $X$ be the $p$-adic symmetric space $X = H \\\\backslash G$, where $G = \\\\mathbf{GL}_{2n}(F)$ and $H = \\\\mathbf{GL}_n(F) \\\\times \\\\mathbf{GL}_n(F)$. We verify a conjecture of Sakellaridis and Venkatesh on the Langlands parameters of certain representations in the discrete spectrum of $X$.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S179304212150024X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S179304212150024X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
设$F$为特征为零且残差特征为奇的非阿基米德局部域。设$X$为$p$进进对称空间$X = H \反斜杠G$,其中$G = \mathbf{GL}_{2n}(F)$, $H = \mathbf{GL}_n(F) \乘以\mathbf{GL}_n(F)$。我们验证了Sakellaridis和Venkatesh关于X离散谱中某些表示的朗兰兹参数的猜想。
Let $F$ be a nonarchimedean local field of characteristic zero and odd residual characteristic. Let $X$ be the $p$-adic symmetric space $X = H \backslash G$, where $G = \mathbf{GL}_{2n}(F)$ and $H = \mathbf{GL}_n(F) \times \mathbf{GL}_n(F)$. We verify a conjecture of Sakellaridis and Venkatesh on the Langlands parameters of certain representations in the discrete spectrum of $X$.