机器学习驱动的网络路由

Kun Yu, Li-Zhuang Tan, Xiao-jin Wu, Z. Gai
{"title":"机器学习驱动的网络路由","authors":"Kun Yu, Li-Zhuang Tan, Xiao-jin Wu, Z. Gai","doi":"10.1109/ICSAI48974.2019.9010507","DOIUrl":null,"url":null,"abstract":"The research community have proposed some frameworks and use-cases for using machine learning in networking. However, there are still real-time problem and ML model selection problem. In this paper, we present the basic model of machine learning driven network routing. This model divided route optimization into the Optimization of Routing Protocol Parameter(ORPP) and the Optimization of Routing Efficiency and Quality(OREQ). The input and output of the machine learning model for routing optimization problems can be described as traffic matrix and route matrix. In the end, we present two experimental results of ORPP and OREQ to demonstrate this model's feasibility.","PeriodicalId":270809,"journal":{"name":"2019 6th International Conference on Systems and Informatics (ICSAI)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Machine Learning Driven Network Routing\",\"authors\":\"Kun Yu, Li-Zhuang Tan, Xiao-jin Wu, Z. Gai\",\"doi\":\"10.1109/ICSAI48974.2019.9010507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research community have proposed some frameworks and use-cases for using machine learning in networking. However, there are still real-time problem and ML model selection problem. In this paper, we present the basic model of machine learning driven network routing. This model divided route optimization into the Optimization of Routing Protocol Parameter(ORPP) and the Optimization of Routing Efficiency and Quality(OREQ). The input and output of the machine learning model for routing optimization problems can be described as traffic matrix and route matrix. In the end, we present two experimental results of ORPP and OREQ to demonstrate this model's feasibility.\",\"PeriodicalId\":270809,\"journal\":{\"name\":\"2019 6th International Conference on Systems and Informatics (ICSAI)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 6th International Conference on Systems and Informatics (ICSAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI48974.2019.9010507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI48974.2019.9010507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

研究界已经提出了一些在网络中使用机器学习的框架和用例。然而,仍然存在实时问题和机器学习模型选择问题。在本文中,我们提出了机器学习驱动网络路由的基本模型。该模型将路由优化分为路由协议参数优化(ORPP)和路由效率与质量优化(OREQ)两部分。路由优化问题的机器学习模型的输入和输出可以描述为流量矩阵和路由矩阵。最后,我们给出了ORPP和OREQ的两个实验结果来证明该模型的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Driven Network Routing
The research community have proposed some frameworks and use-cases for using machine learning in networking. However, there are still real-time problem and ML model selection problem. In this paper, we present the basic model of machine learning driven network routing. This model divided route optimization into the Optimization of Routing Protocol Parameter(ORPP) and the Optimization of Routing Efficiency and Quality(OREQ). The input and output of the machine learning model for routing optimization problems can be described as traffic matrix and route matrix. In the end, we present two experimental results of ORPP and OREQ to demonstrate this model's feasibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信