基于计算智能技术的回归模型变量选择方法

S. Dhamodharavadhani, R. Rathipriya
{"title":"基于计算智能技术的回归模型变量选择方法","authors":"S. Dhamodharavadhani, R. Rathipriya","doi":"10.4018/978-1-5225-9611-0.CH019","DOIUrl":null,"url":null,"abstract":"Regression model (RM) is an important tool for modeling and analyzing data. It is one of the popular predictive modeling techniques which explore the relationship between a dependent (target) and independent (predictor) variables. The variable selection method is used to form a good and effective regression model. Many variable selection methods existing for regression model such as filter method, wrapper method, embedded methods, forward selection method, Backward Elimination methods, stepwise methods, and so on. In this chapter, computational intelligence-based variable selection method is discussed with respect to the regression model in cybersecurity. Generally, these regression models depend on the set of (predictor) variables. Therefore, variable selection methods are used to select the best subset of predictors from the entire set of variables. Genetic algorithm-based quick-reduct method is proposed to extract optimal predictor subset from the given data to form an optimal regression model.","PeriodicalId":354100,"journal":{"name":"Handbook of Research on Machine and Deep Learning Applications for Cyber Security","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Variable Selection Method for Regression Models Using Computational Intelligence Techniques\",\"authors\":\"S. Dhamodharavadhani, R. Rathipriya\",\"doi\":\"10.4018/978-1-5225-9611-0.CH019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regression model (RM) is an important tool for modeling and analyzing data. It is one of the popular predictive modeling techniques which explore the relationship between a dependent (target) and independent (predictor) variables. The variable selection method is used to form a good and effective regression model. Many variable selection methods existing for regression model such as filter method, wrapper method, embedded methods, forward selection method, Backward Elimination methods, stepwise methods, and so on. In this chapter, computational intelligence-based variable selection method is discussed with respect to the regression model in cybersecurity. Generally, these regression models depend on the set of (predictor) variables. Therefore, variable selection methods are used to select the best subset of predictors from the entire set of variables. Genetic algorithm-based quick-reduct method is proposed to extract optimal predictor subset from the given data to form an optimal regression model.\",\"PeriodicalId\":354100,\"journal\":{\"name\":\"Handbook of Research on Machine and Deep Learning Applications for Cyber Security\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Research on Machine and Deep Learning Applications for Cyber Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-5225-9611-0.CH019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Research on Machine and Deep Learning Applications for Cyber Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-9611-0.CH019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

回归模型(RM)是数据建模和分析的重要工具。它是一种流行的预测建模技术,它探索依赖(目标)和独立(预测)变量之间的关系。采用变量选择方法,形成良好有效的回归模型。回归模型的变量选择方法有过滤法、包装法、嵌入法、前向选择法、后向消除法、逐步法等。本章讨论了网络安全回归模型中基于计算智能的变量选择方法。通常,这些回归模型依赖于一组(预测器)变量。因此,使用变量选择方法从整个变量集中选择最佳的预测因子子集。提出了基于遗传算法的快速约简方法,从给定数据中提取最优预测子集,形成最优回归模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variable Selection Method for Regression Models Using Computational Intelligence Techniques
Regression model (RM) is an important tool for modeling and analyzing data. It is one of the popular predictive modeling techniques which explore the relationship between a dependent (target) and independent (predictor) variables. The variable selection method is used to form a good and effective regression model. Many variable selection methods existing for regression model such as filter method, wrapper method, embedded methods, forward selection method, Backward Elimination methods, stepwise methods, and so on. In this chapter, computational intelligence-based variable selection method is discussed with respect to the regression model in cybersecurity. Generally, these regression models depend on the set of (predictor) variables. Therefore, variable selection methods are used to select the best subset of predictors from the entire set of variables. Genetic algorithm-based quick-reduct method is proposed to extract optimal predictor subset from the given data to form an optimal regression model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信