{"title":"基于个体的人群疏散模型:结合个体、社会和技术方面","authors":"K. Zia, A. Ferscha","doi":"10.1145/3384441.3395973","DOIUrl":null,"url":null,"abstract":"Development of crowd evacuation systems is a challenge due to involvement of complex interrelated aspects, diversity of involved individuals and/or environment, and lack of direct evidence. Evacuation modeling and simulation is used to analyze various possible outcomes as different scenarios unfold, typically when the complexity of scenario is high. However, incorporation of different aspect categories in a unified modeling space is a challenge. In this paper, we addressed this challenge by combining individual, social and technological models of people during evacuation, while pivoting all these aspects on a common agent-based modeling framework and a grid-based hypothetical environment. By simulating these models, an insight into the effectiveness of several interesting evacuation scenarios is provided. Based on the simulation results, a couple of useful recommendations are also given. The most important recommendation is not to use potential field indicating the exits dynamics as an exit strategy particularly for a spatial complexity environment.","PeriodicalId":422248,"journal":{"name":"Proceedings of the 2020 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An Agent-Based Model of Crowd Evacuation: Combining Individual, Social and Technological Aspects\",\"authors\":\"K. Zia, A. Ferscha\",\"doi\":\"10.1145/3384441.3395973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development of crowd evacuation systems is a challenge due to involvement of complex interrelated aspects, diversity of involved individuals and/or environment, and lack of direct evidence. Evacuation modeling and simulation is used to analyze various possible outcomes as different scenarios unfold, typically when the complexity of scenario is high. However, incorporation of different aspect categories in a unified modeling space is a challenge. In this paper, we addressed this challenge by combining individual, social and technological models of people during evacuation, while pivoting all these aspects on a common agent-based modeling framework and a grid-based hypothetical environment. By simulating these models, an insight into the effectiveness of several interesting evacuation scenarios is provided. Based on the simulation results, a couple of useful recommendations are also given. The most important recommendation is not to use potential field indicating the exits dynamics as an exit strategy particularly for a spatial complexity environment.\",\"PeriodicalId\":422248,\"journal\":{\"name\":\"Proceedings of the 2020 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3384441.3395973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3384441.3395973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Agent-Based Model of Crowd Evacuation: Combining Individual, Social and Technological Aspects
Development of crowd evacuation systems is a challenge due to involvement of complex interrelated aspects, diversity of involved individuals and/or environment, and lack of direct evidence. Evacuation modeling and simulation is used to analyze various possible outcomes as different scenarios unfold, typically when the complexity of scenario is high. However, incorporation of different aspect categories in a unified modeling space is a challenge. In this paper, we addressed this challenge by combining individual, social and technological models of people during evacuation, while pivoting all these aspects on a common agent-based modeling framework and a grid-based hypothetical environment. By simulating these models, an insight into the effectiveness of several interesting evacuation scenarios is provided. Based on the simulation results, a couple of useful recommendations are also given. The most important recommendation is not to use potential field indicating the exits dynamics as an exit strategy particularly for a spatial complexity environment.