与A型Weyl群相关的离散动力系统的q-变形

Azusa Ikeda, T. Masuda
{"title":"与A型Weyl群相关的离散动力系统的q-变形","authors":"Azusa Ikeda, T. Masuda","doi":"10.1093/INTEGR/XYW004","DOIUrl":null,"url":null,"abstract":"A $q$-deformation of discrete dynamical systems associated with the Weyl group of type $A$ is proposed. This is a natural generalization of the birational Weyl group action for the $q$-Painleve equation of type $A_4^{(1)}$. A determinant formula of Jacobi–Trudi type for a family of Laurent polynomials arising from the action of the Weyl group is also presented.","PeriodicalId":242196,"journal":{"name":"Journal of Integrable Systems","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A q-deformation of discrete dynamical systems associated with the Weyl group of type A\",\"authors\":\"Azusa Ikeda, T. Masuda\",\"doi\":\"10.1093/INTEGR/XYW004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A $q$-deformation of discrete dynamical systems associated with the Weyl group of type $A$ is proposed. This is a natural generalization of the birational Weyl group action for the $q$-Painleve equation of type $A_4^{(1)}$. A determinant formula of Jacobi–Trudi type for a family of Laurent polynomials arising from the action of the Weyl group is also presented.\",\"PeriodicalId\":242196,\"journal\":{\"name\":\"Journal of Integrable Systems\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/INTEGR/XYW004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/INTEGR/XYW004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究一类Weyl群的离散动力系统的A$ q$-变形问题。这是对类型为$A_4^{(1)}$的$q$-Painleve方程的双族Weyl群作用的自然推广。给出了由Weyl群作用产生的一类Laurent多项式的Jacobi-Trudi型行列式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A q-deformation of discrete dynamical systems associated with the Weyl group of type A
A $q$-deformation of discrete dynamical systems associated with the Weyl group of type $A$ is proposed. This is a natural generalization of the birational Weyl group action for the $q$-Painleve equation of type $A_4^{(1)}$. A determinant formula of Jacobi–Trudi type for a family of Laurent polynomials arising from the action of the Weyl group is also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信