Neev:用于硬件票证内容改进的认知支持代理

Nishtha Madaan, Gautam Singh, Arun Kumar, Gargi Dasgupta
{"title":"Neev:用于硬件票证内容改进的认知支持代理","authors":"Nishtha Madaan, Gautam Singh, Arun Kumar, Gargi Dasgupta","doi":"10.23919/INM.2017.7987285","DOIUrl":null,"url":null,"abstract":"IT service providers differentiate themselves through offering after-sales support for hardware and software products. Thus, businesses, including large corporations, have intricate work-flows for servicing such support requests while reducing man-hours needed. These work-flows generally operate through a ticketing system for resolving customer issues. A lot of man-hours are spent in searching old tickets for correct problem and resolution for such issues. Support requests pertaining to enterprise hardware are more challenging than desktop support for end-user products. Enterprise hardware requires deeper diagnosis involving several systems and expertise of multiple agents. In this work we propose a cognitive agent, Neev, which helps in mitigating the problem in a three-fold fashion (1) retrieving a summary of relevant ticket text (2) Tagging the relevant parts as a part-of-the-problem or a part-of-the-solution (3) Focusing on the precise problem and solution. We evaluate the performance of our system using a rank-based metric where a ticket extraction is successful if the problem or solution occur in the top-n suggestions. We report the results for varying top-n values for both problem and solution on varying severity of the tickets. We find that the accuracy for problem extraction in top-1 is 62% and it reaches 86% and 94% for top-3 and top-5 cases, respectively. Furthermore, the accuracy for solution extraction reaches 62% and 88% for top-3 and top-8 cases, respectively.","PeriodicalId":119633,"journal":{"name":"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Neev: A cognitive support agent for content improvement in hardware tickets\",\"authors\":\"Nishtha Madaan, Gautam Singh, Arun Kumar, Gargi Dasgupta\",\"doi\":\"10.23919/INM.2017.7987285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IT service providers differentiate themselves through offering after-sales support for hardware and software products. Thus, businesses, including large corporations, have intricate work-flows for servicing such support requests while reducing man-hours needed. These work-flows generally operate through a ticketing system for resolving customer issues. A lot of man-hours are spent in searching old tickets for correct problem and resolution for such issues. Support requests pertaining to enterprise hardware are more challenging than desktop support for end-user products. Enterprise hardware requires deeper diagnosis involving several systems and expertise of multiple agents. In this work we propose a cognitive agent, Neev, which helps in mitigating the problem in a three-fold fashion (1) retrieving a summary of relevant ticket text (2) Tagging the relevant parts as a part-of-the-problem or a part-of-the-solution (3) Focusing on the precise problem and solution. We evaluate the performance of our system using a rank-based metric where a ticket extraction is successful if the problem or solution occur in the top-n suggestions. We report the results for varying top-n values for both problem and solution on varying severity of the tickets. We find that the accuracy for problem extraction in top-1 is 62% and it reaches 86% and 94% for top-3 and top-5 cases, respectively. Furthermore, the accuracy for solution extraction reaches 62% and 88% for top-3 and top-8 cases, respectively.\",\"PeriodicalId\":119633,\"journal\":{\"name\":\"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/INM.2017.7987285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/INM.2017.7987285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

IT服务提供商通过提供硬件和软件产品的售后支持来使自己与众不同。因此,包括大公司在内的企业都有复杂的工作流程来服务此类支持请求,同时减少所需的工时。这些工作流程通常通过票务系统来解决客户问题。大量的人力时间花费在搜索旧票以寻找正确的问题和解决这些问题上。与终端用户产品的桌面支持相比,与企业硬件相关的支持请求更具挑战性。企业硬件需要涉及多个系统和多个代理的专业知识的更深入的诊断。在这项工作中,我们提出了一个认知代理Neev,它以三种方式帮助缓解问题(1)检索相关票证文本的摘要(2)将相关部分标记为问题的一部分或解决方案的一部分(3)关注精确的问题和解决方案。我们使用基于排名的度量来评估系统的性能,如果问题或解决方案出现在前n个建议中,则票据提取成功。我们报告了问题和解决方案在不同严重程度上的不同top-n值的结果。我们发现top-1的问题提取准确率为62%,top-3和top-5的问题提取准确率分别达到86%和94%。在前3例和前8例中,溶液提取的准确率分别达到62%和88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neev: A cognitive support agent for content improvement in hardware tickets
IT service providers differentiate themselves through offering after-sales support for hardware and software products. Thus, businesses, including large corporations, have intricate work-flows for servicing such support requests while reducing man-hours needed. These work-flows generally operate through a ticketing system for resolving customer issues. A lot of man-hours are spent in searching old tickets for correct problem and resolution for such issues. Support requests pertaining to enterprise hardware are more challenging than desktop support for end-user products. Enterprise hardware requires deeper diagnosis involving several systems and expertise of multiple agents. In this work we propose a cognitive agent, Neev, which helps in mitigating the problem in a three-fold fashion (1) retrieving a summary of relevant ticket text (2) Tagging the relevant parts as a part-of-the-problem or a part-of-the-solution (3) Focusing on the precise problem and solution. We evaluate the performance of our system using a rank-based metric where a ticket extraction is successful if the problem or solution occur in the top-n suggestions. We report the results for varying top-n values for both problem and solution on varying severity of the tickets. We find that the accuracy for problem extraction in top-1 is 62% and it reaches 86% and 94% for top-3 and top-5 cases, respectively. Furthermore, the accuracy for solution extraction reaches 62% and 88% for top-3 and top-8 cases, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信