空间辐射环境下OSR二次面镜的电学特性

Zicai Shen, Xiaofeng Ma, Meiping Zhu, J. Shao
{"title":"空间辐射环境下OSR二次面镜的电学特性","authors":"Zicai Shen, Xiaofeng Ma, Meiping Zhu, J. Shao","doi":"10.1117/12.2535461","DOIUrl":null,"url":null,"abstract":"Optical second surface reflector (OSR) is widely used as thermal control coating on the surface of spacecraft. Besides its thermal physics property such as solar absorption and thermal emissivity, its electrical property such as surface resistivity is used to prevent surface charging. Under the influence of space radiation environment, the surface electrical performance of OSR secondary surface mirror will be degraded, which will threaten the on-orbit safety and reliability of spacecraft. Based on the principle of dose depth distribution equivalence and total exposure equivalence, the influence of the space electron, proton and ultraviolet radiation environments on the surface electrical properties of OSR are experimentally studied, and its performance is in situ test. It was found that the resistivity of OSR secondary surface decreased exponentially with the increase of ultraviolet exposure and irradiation of electrons and protons. This shows that the surface conductivity of the OSR secondary surface mirror in space radiation environment increases and it has a better ability to resist surface charging and discharging effects.","PeriodicalId":197837,"journal":{"name":"SPIE/SIOM Pacific Rim Laser Damage","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical property of OSR second surface mirror in space radiation environments\",\"authors\":\"Zicai Shen, Xiaofeng Ma, Meiping Zhu, J. Shao\",\"doi\":\"10.1117/12.2535461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical second surface reflector (OSR) is widely used as thermal control coating on the surface of spacecraft. Besides its thermal physics property such as solar absorption and thermal emissivity, its electrical property such as surface resistivity is used to prevent surface charging. Under the influence of space radiation environment, the surface electrical performance of OSR secondary surface mirror will be degraded, which will threaten the on-orbit safety and reliability of spacecraft. Based on the principle of dose depth distribution equivalence and total exposure equivalence, the influence of the space electron, proton and ultraviolet radiation environments on the surface electrical properties of OSR are experimentally studied, and its performance is in situ test. It was found that the resistivity of OSR secondary surface decreased exponentially with the increase of ultraviolet exposure and irradiation of electrons and protons. This shows that the surface conductivity of the OSR secondary surface mirror in space radiation environment increases and it has a better ability to resist surface charging and discharging effects.\",\"PeriodicalId\":197837,\"journal\":{\"name\":\"SPIE/SIOM Pacific Rim Laser Damage\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE/SIOM Pacific Rim Laser Damage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2535461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE/SIOM Pacific Rim Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2535461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光学第二表面反射器(OSR)作为航天器表面的热控涂层得到了广泛的应用。除了利用其热物理性质如太阳吸收和热辐射率外,还利用其电学性质如表面电阻率来防止表面充电。在空间辐射环境的影响下,OSR二次面镜的表面电学性能将会下降,威胁到航天器在轨的安全可靠性。基于剂量深度分布等效和总暴露等效原理,实验研究了空间电子、质子和紫外线辐射环境对OSR表面电学性能的影响,并对其性能进行了原位测试。结果表明,随着紫外照射和电子、质子辐照的增加,OSR二次表面的电阻率呈指数下降。这说明OSR二次面镜在空间辐射环境下的表面电导率提高,具有更好的抵抗表面充放电效应的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrical property of OSR second surface mirror in space radiation environments
Optical second surface reflector (OSR) is widely used as thermal control coating on the surface of spacecraft. Besides its thermal physics property such as solar absorption and thermal emissivity, its electrical property such as surface resistivity is used to prevent surface charging. Under the influence of space radiation environment, the surface electrical performance of OSR secondary surface mirror will be degraded, which will threaten the on-orbit safety and reliability of spacecraft. Based on the principle of dose depth distribution equivalence and total exposure equivalence, the influence of the space electron, proton and ultraviolet radiation environments on the surface electrical properties of OSR are experimentally studied, and its performance is in situ test. It was found that the resistivity of OSR secondary surface decreased exponentially with the increase of ultraviolet exposure and irradiation of electrons and protons. This shows that the surface conductivity of the OSR secondary surface mirror in space radiation environment increases and it has a better ability to resist surface charging and discharging effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信