基于深度学习技术的临床病例自动分类

B. Cataldo-Vivar, H. Allende-Cid, R. Alfaro
{"title":"基于深度学习技术的临床病例自动分类","authors":"B. Cataldo-Vivar, H. Allende-Cid, R. Alfaro","doi":"10.1049/icp.2021.1439","DOIUrl":null,"url":null,"abstract":"The automatic assignation of disease codes is a complex problem that has been addressed many times throughout decades. In particular, the categorization of ICD (International Classification of Diseases) codes, which it's a compendium of symptoms, diseases, procedures and injuries. This activity is done by manually analyzing clinical cases or discharge summaries and its use has spread to areas like billing, administration or refund. Leading to associated costs close to $417 billion dollars for United States on 2012. Therefore in this investigation we propose Deep Learning models aiming to help in the task of code assignment. For this, 6 models are proposed, including architectures of Convulutional and Recurrent Neuronal Networks; both focused on NLP (Natural Language Processing) extracting features through aWord Embeddings approach. The results were obtained from the top 10, 20, 50 and 100 most frequent diseases; getting an Average Precision of 79,86% for the top 10 with an AUC of 91,37% which outperforms other methods used previously in this task.","PeriodicalId":431144,"journal":{"name":"11th International Conference of Pattern Recognition Systems (ICPRS 2021)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Classification of Clinical Cases Using Deep Learning Techniques\",\"authors\":\"B. Cataldo-Vivar, H. Allende-Cid, R. Alfaro\",\"doi\":\"10.1049/icp.2021.1439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automatic assignation of disease codes is a complex problem that has been addressed many times throughout decades. In particular, the categorization of ICD (International Classification of Diseases) codes, which it's a compendium of symptoms, diseases, procedures and injuries. This activity is done by manually analyzing clinical cases or discharge summaries and its use has spread to areas like billing, administration or refund. Leading to associated costs close to $417 billion dollars for United States on 2012. Therefore in this investigation we propose Deep Learning models aiming to help in the task of code assignment. For this, 6 models are proposed, including architectures of Convulutional and Recurrent Neuronal Networks; both focused on NLP (Natural Language Processing) extracting features through aWord Embeddings approach. The results were obtained from the top 10, 20, 50 and 100 most frequent diseases; getting an Average Precision of 79,86% for the top 10 with an AUC of 91,37% which outperforms other methods used previously in this task.\",\"PeriodicalId\":431144,\"journal\":{\"name\":\"11th International Conference of Pattern Recognition Systems (ICPRS 2021)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th International Conference of Pattern Recognition Systems (ICPRS 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/icp.2021.1439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th International Conference of Pattern Recognition Systems (ICPRS 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/icp.2021.1439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

疾病代码的自动分配是一个复杂的问题,几十年来已经解决了很多次。特别是ICD(国际疾病分类)代码的分类,它是症状,疾病,程序和伤害的概要。该活动通过手动分析临床病例或出院摘要来完成,其用途已扩展到计费、管理或退款等领域。2012年,美国的相关成本接近4170亿美元。因此,在本研究中,我们提出了旨在帮助完成代码分配任务的深度学习模型。为此,提出了6种模型,包括抽搐神经网络和循环神经网络的结构;都专注于NLP(自然语言处理)通过word嵌入方法提取特征。结果来自前10、20、50和100种最常见的疾病;前10名的平均精度为79.86%,AUC为91.37%,优于之前在此任务中使用的其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Classification of Clinical Cases Using Deep Learning Techniques
The automatic assignation of disease codes is a complex problem that has been addressed many times throughout decades. In particular, the categorization of ICD (International Classification of Diseases) codes, which it's a compendium of symptoms, diseases, procedures and injuries. This activity is done by manually analyzing clinical cases or discharge summaries and its use has spread to areas like billing, administration or refund. Leading to associated costs close to $417 billion dollars for United States on 2012. Therefore in this investigation we propose Deep Learning models aiming to help in the task of code assignment. For this, 6 models are proposed, including architectures of Convulutional and Recurrent Neuronal Networks; both focused on NLP (Natural Language Processing) extracting features through aWord Embeddings approach. The results were obtained from the top 10, 20, 50 and 100 most frequent diseases; getting an Average Precision of 79,86% for the top 10 with an AUC of 91,37% which outperforms other methods used previously in this task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信