M. Hirabayashi, A. Nishikawa, Fumiaki Tanaka, M. Hagiya, H. Kojima, K. Oiwa
{"title":"基于dna的串声纳米机器人模拟阿米巴黏液型真菌","authors":"M. Hirabayashi, A. Nishikawa, Fumiaki Tanaka, M. Hagiya, H. Kojima, K. Oiwa","doi":"10.1109/NANO.2010.5697833","DOIUrl":null,"url":null,"abstract":"Toward the realization of the intelligent control of internal and external environments, we have presented a DNA-based nanorobot that can communicate with bacteria. This nanomachine has the potential ability to recognize signals of bacterial cell-cell communication called quorum sensing and produce antibiotic aptamers. We have succeeded in demonstrating that the synthetic DNA robot mimicking slime funguses can serve an effective ON-OFF control system for the aptamer transcription in response to quorum sensing signals. Our results indicate that the DNA nanotechnology can provide promising nanometer-sized machines for the effective control of the bacterial population balance by the appropriate antibiotic aptamer transcription.","PeriodicalId":254587,"journal":{"name":"10th IEEE International Conference on Nanotechnology","volume":"37 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"DNA-based crosstalk nanorobot mimicking amoeba type of slime funguses\",\"authors\":\"M. Hirabayashi, A. Nishikawa, Fumiaki Tanaka, M. Hagiya, H. Kojima, K. Oiwa\",\"doi\":\"10.1109/NANO.2010.5697833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Toward the realization of the intelligent control of internal and external environments, we have presented a DNA-based nanorobot that can communicate with bacteria. This nanomachine has the potential ability to recognize signals of bacterial cell-cell communication called quorum sensing and produce antibiotic aptamers. We have succeeded in demonstrating that the synthetic DNA robot mimicking slime funguses can serve an effective ON-OFF control system for the aptamer transcription in response to quorum sensing signals. Our results indicate that the DNA nanotechnology can provide promising nanometer-sized machines for the effective control of the bacterial population balance by the appropriate antibiotic aptamer transcription.\",\"PeriodicalId\":254587,\"journal\":{\"name\":\"10th IEEE International Conference on Nanotechnology\",\"volume\":\"37 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th IEEE International Conference on Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2010.5697833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th IEEE International Conference on Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2010.5697833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DNA-based crosstalk nanorobot mimicking amoeba type of slime funguses
Toward the realization of the intelligent control of internal and external environments, we have presented a DNA-based nanorobot that can communicate with bacteria. This nanomachine has the potential ability to recognize signals of bacterial cell-cell communication called quorum sensing and produce antibiotic aptamers. We have succeeded in demonstrating that the synthetic DNA robot mimicking slime funguses can serve an effective ON-OFF control system for the aptamer transcription in response to quorum sensing signals. Our results indicate that the DNA nanotechnology can provide promising nanometer-sized machines for the effective control of the bacterial population balance by the appropriate antibiotic aptamer transcription.