单变量平稳过程的极值理论

Samia Ayari, M. Boutahar
{"title":"单变量平稳过程的极值理论","authors":"Samia Ayari, M. Boutahar","doi":"10.1109/GSCIT.2016.24","DOIUrl":null,"url":null,"abstract":"Extreme value theory assumes that random variables are independent and identically distributed. This assumption cannot occur in time series analysis. In this paper, we investigate the extremal behavior of a stationary Gaussian autoregressive model. The Kolmogorov-Smirnov goodness of fit test shows that block maxima data converges in probability to a Gumbel distribution, so the introduction of dependence assumption doesn’t affect the extreme values distribution type.","PeriodicalId":295398,"journal":{"name":"2016 Global Summit on Computer & Information Technology (GSCIT)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extreme Value Theory for Univariate Stationary Processes\",\"authors\":\"Samia Ayari, M. Boutahar\",\"doi\":\"10.1109/GSCIT.2016.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme value theory assumes that random variables are independent and identically distributed. This assumption cannot occur in time series analysis. In this paper, we investigate the extremal behavior of a stationary Gaussian autoregressive model. The Kolmogorov-Smirnov goodness of fit test shows that block maxima data converges in probability to a Gumbel distribution, so the introduction of dependence assumption doesn’t affect the extreme values distribution type.\",\"PeriodicalId\":295398,\"journal\":{\"name\":\"2016 Global Summit on Computer & Information Technology (GSCIT)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Global Summit on Computer & Information Technology (GSCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GSCIT.2016.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Global Summit on Computer & Information Technology (GSCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSCIT.2016.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

极值理论假设随机变量是独立且同分布的。这种假设在时间序列分析中不会出现。本文研究了平稳高斯自回归模型的极值行为。Kolmogorov-Smirnov拟合优度检验表明,块极大值数据在概率上收敛于Gumbel分布,因此引入依赖性假设并不影响极值分布类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extreme Value Theory for Univariate Stationary Processes
Extreme value theory assumes that random variables are independent and identically distributed. This assumption cannot occur in time series analysis. In this paper, we investigate the extremal behavior of a stationary Gaussian autoregressive model. The Kolmogorov-Smirnov goodness of fit test shows that block maxima data converges in probability to a Gumbel distribution, so the introduction of dependence assumption doesn’t affect the extreme values distribution type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信