{"title":"单变量平稳过程的极值理论","authors":"Samia Ayari, M. Boutahar","doi":"10.1109/GSCIT.2016.24","DOIUrl":null,"url":null,"abstract":"Extreme value theory assumes that random variables are independent and identically distributed. This assumption cannot occur in time series analysis. In this paper, we investigate the extremal behavior of a stationary Gaussian autoregressive model. The Kolmogorov-Smirnov goodness of fit test shows that block maxima data converges in probability to a Gumbel distribution, so the introduction of dependence assumption doesn’t affect the extreme values distribution type.","PeriodicalId":295398,"journal":{"name":"2016 Global Summit on Computer & Information Technology (GSCIT)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extreme Value Theory for Univariate Stationary Processes\",\"authors\":\"Samia Ayari, M. Boutahar\",\"doi\":\"10.1109/GSCIT.2016.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme value theory assumes that random variables are independent and identically distributed. This assumption cannot occur in time series analysis. In this paper, we investigate the extremal behavior of a stationary Gaussian autoregressive model. The Kolmogorov-Smirnov goodness of fit test shows that block maxima data converges in probability to a Gumbel distribution, so the introduction of dependence assumption doesn’t affect the extreme values distribution type.\",\"PeriodicalId\":295398,\"journal\":{\"name\":\"2016 Global Summit on Computer & Information Technology (GSCIT)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Global Summit on Computer & Information Technology (GSCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GSCIT.2016.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Global Summit on Computer & Information Technology (GSCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSCIT.2016.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extreme Value Theory for Univariate Stationary Processes
Extreme value theory assumes that random variables are independent and identically distributed. This assumption cannot occur in time series analysis. In this paper, we investigate the extremal behavior of a stationary Gaussian autoregressive model. The Kolmogorov-Smirnov goodness of fit test shows that block maxima data converges in probability to a Gumbel distribution, so the introduction of dependence assumption doesn’t affect the extreme values distribution type.