具有物理应用的Zeta函数的正则化2

M. Fujimoto, Kunihiko Uehara
{"title":"具有物理应用的Zeta函数的正则化2","authors":"M. Fujimoto, Kunihiko Uehara","doi":"10.5923/J.IJTMP.20120205.06","DOIUrl":null,"url":null,"abstract":"We have proposed a regularization technique and applied it to the Eu ler product of the zeta functions in the part one. In this paper that is the second part of the trilogy, we aim the nature of the non-trivial zero for the Riemann zeta function which gives us another evidence to demonstrate the Riemann hypotheses by way of the approximate functional equation.Some other results on the critical line are p resented using the relations between the Euler product and the deformed summation representations in the critical strip. We also discuss a set of equations which yields the primes and the zeros of the zeta functions. In part three, we will focus on physical applicat ions using these outcomes.","PeriodicalId":415446,"journal":{"name":"International Journal of Theoretical and Mathematical Physics","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Regularization for the Zeta Functions with Physical Applications II\",\"authors\":\"M. Fujimoto, Kunihiko Uehara\",\"doi\":\"10.5923/J.IJTMP.20120205.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have proposed a regularization technique and applied it to the Eu ler product of the zeta functions in the part one. In this paper that is the second part of the trilogy, we aim the nature of the non-trivial zero for the Riemann zeta function which gives us another evidence to demonstrate the Riemann hypotheses by way of the approximate functional equation.Some other results on the critical line are p resented using the relations between the Euler product and the deformed summation representations in the critical strip. We also discuss a set of equations which yields the primes and the zeros of the zeta functions. In part three, we will focus on physical applicat ions using these outcomes.\",\"PeriodicalId\":415446,\"journal\":{\"name\":\"International Journal of Theoretical and Mathematical Physics\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5923/J.IJTMP.20120205.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.IJTMP.20120205.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在第一部分中,我们提出了一种正则化技术,并将其应用于ζ函数的Eu - ler积。在本文中,这是三部曲的第二部分,我们的目的是黎曼ζ函数的非平凡零的性质,这给了我们另一个证据来证明黎曼假设的近似泛函方程的方式。利用临界带上的欧拉积与变形求和表示之间的关系,给出了临界线上的其他一些结果。我们还讨论了一组方程,这些方程产生了ζ函数的素数和零点。在第3部分中,我们将重点关注使用这些结果的物理应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Regularization for the Zeta Functions with Physical Applications II
We have proposed a regularization technique and applied it to the Eu ler product of the zeta functions in the part one. In this paper that is the second part of the trilogy, we aim the nature of the non-trivial zero for the Riemann zeta function which gives us another evidence to demonstrate the Riemann hypotheses by way of the approximate functional equation.Some other results on the critical line are p resented using the relations between the Euler product and the deformed summation representations in the critical strip. We also discuss a set of equations which yields the primes and the zeros of the zeta functions. In part three, we will focus on physical applicat ions using these outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信