基于ML的D3 R:使用随机森林检测DDoS

Anagha Ramesh, Ramza Haris, Sumedha Arora
{"title":"基于ML的D3 R:使用随机森林检测DDoS","authors":"Anagha Ramesh, Ramza Haris, Sumedha Arora","doi":"10.1109/CCGridW59191.2023.00035","DOIUrl":null,"url":null,"abstract":"DDoS attacks are a major security risk to cloud servers and websites. To defend against these attacks, techniques such as reducing server vulnerabilities can be employed. In this study, the Random Forest algorithm is used to detect and prevent DDoS attacks, enhancing cloud security and minimizing attack damage by collecting network traffic data as input, where the performance of RF is analyzed. Results demonstrate the effectiveness of Random Forest in mitigating DDoS attacks in cloud environments.","PeriodicalId":341115,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)","volume":"251 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ML based D3 R: Detecting DDoS using Random Forest\",\"authors\":\"Anagha Ramesh, Ramza Haris, Sumedha Arora\",\"doi\":\"10.1109/CCGridW59191.2023.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DDoS attacks are a major security risk to cloud servers and websites. To defend against these attacks, techniques such as reducing server vulnerabilities can be employed. In this study, the Random Forest algorithm is used to detect and prevent DDoS attacks, enhancing cloud security and minimizing attack damage by collecting network traffic data as input, where the performance of RF is analyzed. Results demonstrate the effectiveness of Random Forest in mitigating DDoS attacks in cloud environments.\",\"PeriodicalId\":341115,\"journal\":{\"name\":\"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)\",\"volume\":\"251 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGridW59191.2023.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGridW59191.2023.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

DDoS攻击是云服务器和网站面临的主要安全风险。为了防御这些攻击,可以采用诸如减少服务器漏洞之类的技术。本研究采用随机森林算法,通过采集网络流量数据作为输入,检测和防范DDoS攻击,增强云安全,最大限度地减少攻击损失,并分析射频的性能。结果证明了随机森林在缓解云环境中的DDoS攻击方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ML based D3 R: Detecting DDoS using Random Forest
DDoS attacks are a major security risk to cloud servers and websites. To defend against these attacks, techniques such as reducing server vulnerabilities can be employed. In this study, the Random Forest algorithm is used to detect and prevent DDoS attacks, enhancing cloud security and minimizing attack damage by collecting network traffic data as input, where the performance of RF is analyzed. Results demonstrate the effectiveness of Random Forest in mitigating DDoS attacks in cloud environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信