基于深度学习接收机的OFDM波形检测

Jaakko Pihlajasalo, D. Korpi, T. Riihonen, J. Talvitie, M. Uusitalo, M. Valkama
{"title":"基于深度学习接收机的OFDM波形检测","authors":"Jaakko Pihlajasalo, D. Korpi, T. Riihonen, J. Talvitie, M. Uusitalo, M. Valkama","doi":"10.1109/spawc51304.2022.9834021","DOIUrl":null,"url":null,"abstract":"With wireless networks evolving towards mmWave and sub-THz frequency bands, hardware impairments such as IQ imbalance, phase noise (PN) and power amplifier (PA) nonlinear distortion are increasingly critical implementation challenges. In this paper, we describe deep learning based physical-layer receiver solution, with neural network layers in both time- and frequency-domain, to efficiently demodulate OFDM signals under coexisting IQ, PN and PA impairments. 5G NR standard-compliant numerical results are provided at 28 GHz band to assess the receiver performance, demonstrating excellent robustness against varying impairment levels when properly trained.","PeriodicalId":423807,"journal":{"name":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Impaired OFDM Waveforms Using Deep Learning Receiver\",\"authors\":\"Jaakko Pihlajasalo, D. Korpi, T. Riihonen, J. Talvitie, M. Uusitalo, M. Valkama\",\"doi\":\"10.1109/spawc51304.2022.9834021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With wireless networks evolving towards mmWave and sub-THz frequency bands, hardware impairments such as IQ imbalance, phase noise (PN) and power amplifier (PA) nonlinear distortion are increasingly critical implementation challenges. In this paper, we describe deep learning based physical-layer receiver solution, with neural network layers in both time- and frequency-domain, to efficiently demodulate OFDM signals under coexisting IQ, PN and PA impairments. 5G NR standard-compliant numerical results are provided at 28 GHz band to assess the receiver performance, demonstrating excellent robustness against varying impairment levels when properly trained.\",\"PeriodicalId\":423807,\"journal\":{\"name\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/spawc51304.2022.9834021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spawc51304.2022.9834021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着无线网络向毫米波和亚太赫兹频段发展,IQ不平衡、相位噪声(PN)和功率放大器(PA)非线性失真等硬件缺陷日益成为实现无线网络的关键挑战。在本文中,我们描述了基于深度学习的物理层接收器解决方案,在时域和频域都有神经网络层,以有效地解调IQ, PN和PA共存的OFDM信号。在28ghz频段提供符合5G NR标准的数值结果,以评估接收器的性能,在适当的训练下,显示出对不同损伤水平的出色鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Impaired OFDM Waveforms Using Deep Learning Receiver
With wireless networks evolving towards mmWave and sub-THz frequency bands, hardware impairments such as IQ imbalance, phase noise (PN) and power amplifier (PA) nonlinear distortion are increasingly critical implementation challenges. In this paper, we describe deep learning based physical-layer receiver solution, with neural network layers in both time- and frequency-domain, to efficiently demodulate OFDM signals under coexisting IQ, PN and PA impairments. 5G NR standard-compliant numerical results are provided at 28 GHz band to assess the receiver performance, demonstrating excellent robustness against varying impairment levels when properly trained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信