求解Zakharov-Shabat逆散射问题的一种新的数值方法

J. Modelski, A. Synyavskyy
{"title":"求解Zakharov-Shabat逆散射问题的一种新的数值方法","authors":"J. Modelski, A. Synyavskyy","doi":"10.1109/MIKON.2006.4345137","DOIUrl":null,"url":null,"abstract":"A numerical aspect of inverse scattering problem solution for plane wave normal incidence on an absorbing medium is considered in the paper. The electromagnetic field equations are reduced to the Zakharov-Shabat's one. A new numerical scheme is developed taking into account peculiarities of the integral equation method for this inverse scattering problem solution. The proposed method has a high accuracy and what is more, it requires neither time consumed iterative approximation nor direct matrix inversion.","PeriodicalId":315003,"journal":{"name":"2006 International Conference on Microwaves, Radar & Wireless Communications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A New Numerical Method for Zakharov-Shabat'S Inverse Scattering Problem Solution\",\"authors\":\"J. Modelski, A. Synyavskyy\",\"doi\":\"10.1109/MIKON.2006.4345137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical aspect of inverse scattering problem solution for plane wave normal incidence on an absorbing medium is considered in the paper. The electromagnetic field equations are reduced to the Zakharov-Shabat's one. A new numerical scheme is developed taking into account peculiarities of the integral equation method for this inverse scattering problem solution. The proposed method has a high accuracy and what is more, it requires neither time consumed iterative approximation nor direct matrix inversion.\",\"PeriodicalId\":315003,\"journal\":{\"name\":\"2006 International Conference on Microwaves, Radar & Wireless Communications\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Microwaves, Radar & Wireless Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIKON.2006.4345137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Microwaves, Radar & Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIKON.2006.4345137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文从数值角度研究了平面波在吸收介质上正入射的反散射问题。电磁场方程被简化为Zakharov-Shabat方程。考虑到积分方程法求解逆散射问题的特殊性,提出了一种新的数值格式。该方法不仅精度高,而且不需要耗时的迭代逼近和直接的矩阵反演。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Numerical Method for Zakharov-Shabat'S Inverse Scattering Problem Solution
A numerical aspect of inverse scattering problem solution for plane wave normal incidence on an absorbing medium is considered in the paper. The electromagnetic field equations are reduced to the Zakharov-Shabat's one. A new numerical scheme is developed taking into account peculiarities of the integral equation method for this inverse scattering problem solution. The proposed method has a high accuracy and what is more, it requires neither time consumed iterative approximation nor direct matrix inversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信