Frank Heyen, T. Munz, M. Neumann, Daniel Ortega, Ngoc Thang Vu, D. Weiskopf, M. Sedlmair
{"title":"ClaVis:一个用于分类器的交互式视觉比较系统","authors":"Frank Heyen, T. Munz, M. Neumann, Daniel Ortega, Ngoc Thang Vu, D. Weiskopf, M. Sedlmair","doi":"10.1145/3399715.3399814","DOIUrl":null,"url":null,"abstract":"We propose ClaVis, a visual analytics system for comparative analysis of classification models. ClaVis allows users to visually compare the performance and behavior of tens to hundreds of classifiers trained with different hyperparameter configurations. Our approach is plugin-based and classifier-agnostic and allows users to add their own datasets and classifier implementations. It provides multiple visualizations, including a multivariate ranking, a similarity map, a scatterplot that reveals correlations between parameters and scores, and a training history chart. We demonstrate the effectivity of our approach in multiple case studies for training classification models in the domain of natural language processing.","PeriodicalId":149902,"journal":{"name":"Proceedings of the International Conference on Advanced Visual Interfaces","volume":"114 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"ClaVis: An Interactive Visual Comparison System for Classifiers\",\"authors\":\"Frank Heyen, T. Munz, M. Neumann, Daniel Ortega, Ngoc Thang Vu, D. Weiskopf, M. Sedlmair\",\"doi\":\"10.1145/3399715.3399814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose ClaVis, a visual analytics system for comparative analysis of classification models. ClaVis allows users to visually compare the performance and behavior of tens to hundreds of classifiers trained with different hyperparameter configurations. Our approach is plugin-based and classifier-agnostic and allows users to add their own datasets and classifier implementations. It provides multiple visualizations, including a multivariate ranking, a similarity map, a scatterplot that reveals correlations between parameters and scores, and a training history chart. We demonstrate the effectivity of our approach in multiple case studies for training classification models in the domain of natural language processing.\",\"PeriodicalId\":149902,\"journal\":{\"name\":\"Proceedings of the International Conference on Advanced Visual Interfaces\",\"volume\":\"114 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Advanced Visual Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3399715.3399814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Advanced Visual Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3399715.3399814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ClaVis: An Interactive Visual Comparison System for Classifiers
We propose ClaVis, a visual analytics system for comparative analysis of classification models. ClaVis allows users to visually compare the performance and behavior of tens to hundreds of classifiers trained with different hyperparameter configurations. Our approach is plugin-based and classifier-agnostic and allows users to add their own datasets and classifier implementations. It provides multiple visualizations, including a multivariate ranking, a similarity map, a scatterplot that reveals correlations between parameters and scores, and a training history chart. We demonstrate the effectivity of our approach in multiple case studies for training classification models in the domain of natural language processing.