基于移动平均法的紧凑遗传算法更新策略

S. Rimcharoen, D. Sutivong, P. Chongstitvatana
{"title":"基于移动平均法的紧凑遗传算法更新策略","authors":"S. Rimcharoen, D. Sutivong, P. Chongstitvatana","doi":"10.1109/ICCIS.2006.252274","DOIUrl":null,"url":null,"abstract":"The compact genetic algorithm (cGA) has a distinct characteristic that it requires almost minimal memory to store candidate solutions. It represents a population structure as a probability distribution over the set of solutions. Although cGA offers many advantages, it has a limitation that hinges on an assumption of the independency between each individual bit. For example, cGA fails to solve a deceptive function or the so called trap function, which is a standard difficult test problem for genetic algorithm. This paper proposes applying a moving average technique to update a probability vector in the compact genetic algorithm. This method requires fewer evaluations and achieves a higher solution quality. The results are compared with the original cGA, sGA, persistent elitist cGA (pe-cGA) and nonpersistent elitist cGA (ne-cGA). The compared results illustrate that the proposed methodology can successfully improve the solution quality by modifying the updating strategy of cGA","PeriodicalId":296028,"journal":{"name":"2006 IEEE Conference on Cybernetics and Intelligent Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Updating Strategy in Compact Genetic Algorithm Using Moving Average Approach\",\"authors\":\"S. Rimcharoen, D. Sutivong, P. Chongstitvatana\",\"doi\":\"10.1109/ICCIS.2006.252274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The compact genetic algorithm (cGA) has a distinct characteristic that it requires almost minimal memory to store candidate solutions. It represents a population structure as a probability distribution over the set of solutions. Although cGA offers many advantages, it has a limitation that hinges on an assumption of the independency between each individual bit. For example, cGA fails to solve a deceptive function or the so called trap function, which is a standard difficult test problem for genetic algorithm. This paper proposes applying a moving average technique to update a probability vector in the compact genetic algorithm. This method requires fewer evaluations and achieves a higher solution quality. The results are compared with the original cGA, sGA, persistent elitist cGA (pe-cGA) and nonpersistent elitist cGA (ne-cGA). The compared results illustrate that the proposed methodology can successfully improve the solution quality by modifying the updating strategy of cGA\",\"PeriodicalId\":296028,\"journal\":{\"name\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2006.252274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2006.252274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

紧凑遗传算法(cGA)有一个显著的特点,它几乎只需要最小的内存来存储候选解。它将总体结构表示为一组解的概率分布。尽管cGA提供了许多优点,但它有一个局限,这取决于每个单独位之间的独立性假设。例如,cGA无法解决欺骗函数或所谓的陷阱函数,这是遗传算法的标准难测试问题。本文提出在紧凑遗传算法中应用移动平均技术来更新概率向量。该方法需要较少的评估,并达到较高的解决质量。结果与原始cGA、sGA、持久精英cGA (pe-cGA)和非持久精英cGA (ne-cGA)进行了比较。对比结果表明,该方法通过修改cGA的更新策略,可以成功地提高求解质量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Updating Strategy in Compact Genetic Algorithm Using Moving Average Approach
The compact genetic algorithm (cGA) has a distinct characteristic that it requires almost minimal memory to store candidate solutions. It represents a population structure as a probability distribution over the set of solutions. Although cGA offers many advantages, it has a limitation that hinges on an assumption of the independency between each individual bit. For example, cGA fails to solve a deceptive function or the so called trap function, which is a standard difficult test problem for genetic algorithm. This paper proposes applying a moving average technique to update a probability vector in the compact genetic algorithm. This method requires fewer evaluations and achieves a higher solution quality. The results are compared with the original cGA, sGA, persistent elitist cGA (pe-cGA) and nonpersistent elitist cGA (ne-cGA). The compared results illustrate that the proposed methodology can successfully improve the solution quality by modifying the updating strategy of cGA
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信