副翼横流、地面效应和双翼构型的计算研究

M. Alsarheed, A. Sedaghat
{"title":"副翼横流、地面效应和双翼构型的计算研究","authors":"M. Alsarheed, A. Sedaghat","doi":"10.4172/2168-9792.1000161","DOIUrl":null,"url":null,"abstract":"An aileron, part of the trailing edge of a fixed-wing airplane, is used to control aircraft’s movement around its longitudinal axis (roll). Ailerons have significant impacts on airfoil surface pressure and its lift and drag coefficients. Both panel and finite volume methods were used on a NACA 2412 airfoil with a 20% aileron in a cross flow. The aerodynamic performance of ailerons alone, in a biplane configuration, and in the ground effects has been computationally investigated using both the panel and the finite volume methods. Several parameters were analyzed including the effects of the attack angle of the airfoil, aileron deflection angle, the ride height from the ground, and the characteristics of biplanes. Results of both computational methods are presented and discussed for the aforementioned configurations of NACA 2412 airfoil with aileron.","PeriodicalId":356774,"journal":{"name":"Journal of Aeronautics and Aerospace Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Computational Study of Ailerons in Cross Flows Ground Effects andBiplanes Configurations\",\"authors\":\"M. Alsarheed, A. Sedaghat\",\"doi\":\"10.4172/2168-9792.1000161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An aileron, part of the trailing edge of a fixed-wing airplane, is used to control aircraft’s movement around its longitudinal axis (roll). Ailerons have significant impacts on airfoil surface pressure and its lift and drag coefficients. Both panel and finite volume methods were used on a NACA 2412 airfoil with a 20% aileron in a cross flow. The aerodynamic performance of ailerons alone, in a biplane configuration, and in the ground effects has been computationally investigated using both the panel and the finite volume methods. Several parameters were analyzed including the effects of the attack angle of the airfoil, aileron deflection angle, the ride height from the ground, and the characteristics of biplanes. Results of both computational methods are presented and discussed for the aforementioned configurations of NACA 2412 airfoil with aileron.\",\"PeriodicalId\":356774,\"journal\":{\"name\":\"Journal of Aeronautics and Aerospace Engineering\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aeronautics and Aerospace Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9792.1000161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aeronautics and Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9792.1000161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

副翼是固定翼飞机后缘的一部分,用于控制飞机绕其纵轴(滚转)运动。副翼对翼型表面压力、升力系数和阻力系数有重要影响。面板和有限体积方法都被用于NACA 2412翼型与20%副翼在交叉流。采用面板法和有限体积法分别对副翼单独、双翼构型和地面效应的气动性能进行了计算研究。分析了翼型攻角、副翼偏转角、离地高度和双翼机特性等参数对飞机性能的影响。给出了两种计算方法的结果,并讨论了上述构型的NACA 2412带副翼翼型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Study of Ailerons in Cross Flows Ground Effects andBiplanes Configurations
An aileron, part of the trailing edge of a fixed-wing airplane, is used to control aircraft’s movement around its longitudinal axis (roll). Ailerons have significant impacts on airfoil surface pressure and its lift and drag coefficients. Both panel and finite volume methods were used on a NACA 2412 airfoil with a 20% aileron in a cross flow. The aerodynamic performance of ailerons alone, in a biplane configuration, and in the ground effects has been computationally investigated using both the panel and the finite volume methods. Several parameters were analyzed including the effects of the attack angle of the airfoil, aileron deflection angle, the ride height from the ground, and the characteristics of biplanes. Results of both computational methods are presented and discussed for the aforementioned configurations of NACA 2412 airfoil with aileron.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信