基于支持向量机的复杂机电系统质量预测研究

Yao Cheng, Xin Gao, Tianyi Gao, Zelin Ren
{"title":"基于支持向量机的复杂机电系统质量预测研究","authors":"Yao Cheng, Xin Gao, Tianyi Gao, Zelin Ren","doi":"10.1109/ICICIP.2016.7885898","DOIUrl":null,"url":null,"abstract":"Aimed to build a health monitoring scheme of complex mechatronic systems, a quality prediction on Tennessee Eastman (TE) process based on support vector machine (SVM) is proposed in this paper after a brief investigation on the regression ability of SVM. The SVM model is builded using the datasets generated by TE process simulation platform. Furthermore the prediction precision of SVM is testified using the simulation of TE process compared with other prediction methods. It indicates from the results that SVM is more beneficial according to the root mean square errors (RMSE) between the actual and the predicted data.","PeriodicalId":226381,"journal":{"name":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study on support vector machine based quality prediction of complex mechatronic systems\",\"authors\":\"Yao Cheng, Xin Gao, Tianyi Gao, Zelin Ren\",\"doi\":\"10.1109/ICICIP.2016.7885898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aimed to build a health monitoring scheme of complex mechatronic systems, a quality prediction on Tennessee Eastman (TE) process based on support vector machine (SVM) is proposed in this paper after a brief investigation on the regression ability of SVM. The SVM model is builded using the datasets generated by TE process simulation platform. Furthermore the prediction precision of SVM is testified using the simulation of TE process compared with other prediction methods. It indicates from the results that SVM is more beneficial according to the root mean square errors (RMSE) between the actual and the predicted data.\",\"PeriodicalId\":226381,\"journal\":{\"name\":\"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2016.7885898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2016.7885898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了构建复杂机电系统的健康监测方案,在简要研究支持向量机(SVM)回归能力的基础上,提出了一种基于支持向量机(SVM)的田纳西州伊士曼(TE)过程质量预测方法。利用TE过程仿真平台生成的数据集建立支持向量机模型。通过对TE过程的仿真,对比其他预测方法,验证了支持向量机的预测精度。结果表明,从实际数据与预测数据的均方根误差(RMSE)来看,支持向量机更为有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on support vector machine based quality prediction of complex mechatronic systems
Aimed to build a health monitoring scheme of complex mechatronic systems, a quality prediction on Tennessee Eastman (TE) process based on support vector machine (SVM) is proposed in this paper after a brief investigation on the regression ability of SVM. The SVM model is builded using the datasets generated by TE process simulation platform. Furthermore the prediction precision of SVM is testified using the simulation of TE process compared with other prediction methods. It indicates from the results that SVM is more beneficial according to the root mean square errors (RMSE) between the actual and the predicted data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信