基于层次密度的人脑白质束聚类

Junming Shao, K. Hahn, Qinli Yang, A. Wohlschläger, C. Böhm, Nicholas Myers, C. Plant
{"title":"基于层次密度的人脑白质束聚类","authors":"Junming Shao, K. Hahn, Qinli Yang, A. Wohlschläger, C. Böhm, Nicholas Myers, C. Plant","doi":"10.4018/jkdb.2010100101","DOIUrl":null,"url":null,"abstract":"Diffusion tensor magnetic resonance imaging (DTI) provides a promising way of estimating the neural fiber pathways in the human brain non-invasively via white matter tractography. However, it is difficult to analyze the vast number of resulting tracts quantitatively. Automatic tract clustering would be useful for the neuroscience community, as it can contribute to accurate neurosurgical planning, tract-based analysis, or white matter atlas creation. In this paper, the authors propose a new framework for automatic white matter tract clustering using a hierarchical density-based approach. A novel fiber similarity measure based on dynamic time warping allows for an effective and efficient evaluation of fiber similarity. A lower bounding technique is used to further speed up the computation. Then the algorithm OPTICS is applied, to sort the data into a reachability plot, visualizing the clustering structure of the data. Interactive and automatic clustering algorithms are finally introduced to obtain the clusters. Extensive experiments on synthetic data and real data demonstrate the effectiveness and efficiency of our fiber similarity measure and show that the hierarchical density-based clustering method can group these tracts into meaningful bundles on multiple scales as well as eliminating noisy fibers.","PeriodicalId":160270,"journal":{"name":"Int. J. Knowl. Discov. Bioinform.","volume":"51 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Hierarchical Density-Based Clustering of White Matter Tracts in the Human Brain\",\"authors\":\"Junming Shao, K. Hahn, Qinli Yang, A. Wohlschläger, C. Böhm, Nicholas Myers, C. Plant\",\"doi\":\"10.4018/jkdb.2010100101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffusion tensor magnetic resonance imaging (DTI) provides a promising way of estimating the neural fiber pathways in the human brain non-invasively via white matter tractography. However, it is difficult to analyze the vast number of resulting tracts quantitatively. Automatic tract clustering would be useful for the neuroscience community, as it can contribute to accurate neurosurgical planning, tract-based analysis, or white matter atlas creation. In this paper, the authors propose a new framework for automatic white matter tract clustering using a hierarchical density-based approach. A novel fiber similarity measure based on dynamic time warping allows for an effective and efficient evaluation of fiber similarity. A lower bounding technique is used to further speed up the computation. Then the algorithm OPTICS is applied, to sort the data into a reachability plot, visualizing the clustering structure of the data. Interactive and automatic clustering algorithms are finally introduced to obtain the clusters. Extensive experiments on synthetic data and real data demonstrate the effectiveness and efficiency of our fiber similarity measure and show that the hierarchical density-based clustering method can group these tracts into meaningful bundles on multiple scales as well as eliminating noisy fibers.\",\"PeriodicalId\":160270,\"journal\":{\"name\":\"Int. J. Knowl. Discov. Bioinform.\",\"volume\":\"51 12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Discov. Bioinform.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jkdb.2010100101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Discov. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jkdb.2010100101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

弥散张量磁共振成像(DTI)提供了一种无创的脑白质束成像方法来估计人脑中的神经纤维通路。然而,很难对大量产生的束进行定量分析。自动神经束聚类对神经科学界很有用,因为它有助于精确的神经外科计划、基于神经束的分析或白质图谱的创建。在本文中,作者提出了一种基于分层密度的方法的自动白质束聚类的新框架。一种基于动态时间翘曲的纤维相似度度量方法可以有效地评价纤维相似度。采用下边界技术进一步提高了计算速度。然后应用OPTICS算法对数据进行可达性图排序,可视化数据的聚类结构。最后介绍了交互式和自动聚类算法来获得聚类。在合成数据和真实数据上的大量实验证明了我们的纤维相似度度量的有效性和效率,并表明基于层次密度的聚类方法可以在多个尺度上将这些束分组为有意义的束,并且可以消除噪声纤维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Density-Based Clustering of White Matter Tracts in the Human Brain
Diffusion tensor magnetic resonance imaging (DTI) provides a promising way of estimating the neural fiber pathways in the human brain non-invasively via white matter tractography. However, it is difficult to analyze the vast number of resulting tracts quantitatively. Automatic tract clustering would be useful for the neuroscience community, as it can contribute to accurate neurosurgical planning, tract-based analysis, or white matter atlas creation. In this paper, the authors propose a new framework for automatic white matter tract clustering using a hierarchical density-based approach. A novel fiber similarity measure based on dynamic time warping allows for an effective and efficient evaluation of fiber similarity. A lower bounding technique is used to further speed up the computation. Then the algorithm OPTICS is applied, to sort the data into a reachability plot, visualizing the clustering structure of the data. Interactive and automatic clustering algorithms are finally introduced to obtain the clusters. Extensive experiments on synthetic data and real data demonstrate the effectiveness and efficiency of our fiber similarity measure and show that the hierarchical density-based clustering method can group these tracts into meaningful bundles on multiple scales as well as eliminating noisy fibers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信