舰船配电用峰值电流控制电隔离DC-DC变换器的平均值建模

H. Suryanarayana, S. Sudhoff
{"title":"舰船配电用峰值电流控制电隔离DC-DC变换器的平均值建模","authors":"H. Suryanarayana, S. Sudhoff","doi":"10.1109/ESTS.2013.6523727","DOIUrl":null,"url":null,"abstract":"The average-value model of a peak-current controlled dc-dc converter with galvanic isolation is derived and its accuracy is demonstrated. The two main contributions of this paper are the development of a new peak-current based control which ensures that load fault currents do not propagate through the system and the derivation of an average-value model for the chosen converter topology with the aforementioned control. The proposed control strategy is shown to yield excellent fault performance. The average-value model (AVM) accurately captures most low-frequency dynamics and is much faster to evaluate than a waveform-level model which includes switching. The subject converter and its control are intended for use in a part of a larger distribution system and, in particular, a shipboard DC power system. The comparison between the AVM and a waveform-level model of a laboratory scale DC-DC converter demonstrates the accuracy of the AVM.","PeriodicalId":119318,"journal":{"name":"2013 IEEE Electric Ship Technologies Symposium (ESTS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Average-value modeling of a peak-current controlled galvanically-isolated DC-DC converter for shipboard power distribution\",\"authors\":\"H. Suryanarayana, S. Sudhoff\",\"doi\":\"10.1109/ESTS.2013.6523727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The average-value model of a peak-current controlled dc-dc converter with galvanic isolation is derived and its accuracy is demonstrated. The two main contributions of this paper are the development of a new peak-current based control which ensures that load fault currents do not propagate through the system and the derivation of an average-value model for the chosen converter topology with the aforementioned control. The proposed control strategy is shown to yield excellent fault performance. The average-value model (AVM) accurately captures most low-frequency dynamics and is much faster to evaluate than a waveform-level model which includes switching. The subject converter and its control are intended for use in a part of a larger distribution system and, in particular, a shipboard DC power system. The comparison between the AVM and a waveform-level model of a laboratory scale DC-DC converter demonstrates the accuracy of the AVM.\",\"PeriodicalId\":119318,\"journal\":{\"name\":\"2013 IEEE Electric Ship Technologies Symposium (ESTS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Electric Ship Technologies Symposium (ESTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTS.2013.6523727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Electric Ship Technologies Symposium (ESTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTS.2013.6523727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

推导了带电流隔离的峰值电流控制dc-dc变换器的平均值模型,并对其精度进行了验证。本文的两个主要贡献是开发了一种新的基于峰值电流的控制方法,该方法确保负载故障电流不会在系统中传播,并推导了使用上述控制方法所选择的变换器拓扑的平均值模型。结果表明,该控制策略具有良好的故障性能。平均值模型(AVM)准确捕获大多数低频动态,并且比包含开关的波形级模型更快地进行评估。本课题的变换器及其控制是用于大型配电系统的一部分,特别是船舶直流电源系统。将AVM与实验室规模DC-DC变换器的波形级模型进行比较,验证了AVM的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Average-value modeling of a peak-current controlled galvanically-isolated DC-DC converter for shipboard power distribution
The average-value model of a peak-current controlled dc-dc converter with galvanic isolation is derived and its accuracy is demonstrated. The two main contributions of this paper are the development of a new peak-current based control which ensures that load fault currents do not propagate through the system and the derivation of an average-value model for the chosen converter topology with the aforementioned control. The proposed control strategy is shown to yield excellent fault performance. The average-value model (AVM) accurately captures most low-frequency dynamics and is much faster to evaluate than a waveform-level model which includes switching. The subject converter and its control are intended for use in a part of a larger distribution system and, in particular, a shipboard DC power system. The comparison between the AVM and a waveform-level model of a laboratory scale DC-DC converter demonstrates the accuracy of the AVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信