微管火焰辅助燃料电池的建模

R. Ghotkar, R. Milcarek
{"title":"微管火焰辅助燃料电池的建模","authors":"R. Ghotkar, R. Milcarek","doi":"10.1115/power2020-16595","DOIUrl":null,"url":null,"abstract":"\n Direct flame fuel cells were developed in 2004 and there have been many iterations of them ever since. One of the latest iterations are the micro-tubular flame-assisted fuel cells. Even though there has been significant experimental research characterizing the performance and polarization losses of flame-assisted fuel cells, there is no model that describes their polarization losses. A model is thus developed and presented in this paper to assess the polarization losses and performance of flame-assisted fuel cells. Voltage and power density variation with current density are the main parameters that are analyzed in this paper. A model for calculating activation, ohmic and polarization losses is developed. Experimental parameters from previously published work like dimensions of the fuel cell layers, the fuel and oxidizer flow rates, the charge transfer coefficient and the exchange current density are used to optimize the model. The FFC is assumed to be a lumped system and a zero dimensional model is thus developed. The model was able to achieve an accuracy up to 95%, which adds to its credibility. The fuel-rich combustion exhaust composition is predicted using chemical equilibrium analysis for the equivalence ratios of 1.25 to 1.4 with intervals of 0.5 at 800°C. The model predicts that the open circuit voltage decreases from 0.94 to 0.89 for the equivalence ratios of 1.4 to 1.25, respectively, which matches experimental results. The model also predicts that the maximum power density decreases with decrease in equivalence ratio. Negligible activation loss was observed in the results while the ohmic loss didn‘t vary significantly with equivalence ratio. The concentration loss increased with decrease in equivalence ratio, which also matches with experimental results.","PeriodicalId":282703,"journal":{"name":"ASME 2020 Power Conference","volume":"266 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling of Micro-Tubular Flame-Assisted Fuel Cells\",\"authors\":\"R. Ghotkar, R. Milcarek\",\"doi\":\"10.1115/power2020-16595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Direct flame fuel cells were developed in 2004 and there have been many iterations of them ever since. One of the latest iterations are the micro-tubular flame-assisted fuel cells. Even though there has been significant experimental research characterizing the performance and polarization losses of flame-assisted fuel cells, there is no model that describes their polarization losses. A model is thus developed and presented in this paper to assess the polarization losses and performance of flame-assisted fuel cells. Voltage and power density variation with current density are the main parameters that are analyzed in this paper. A model for calculating activation, ohmic and polarization losses is developed. Experimental parameters from previously published work like dimensions of the fuel cell layers, the fuel and oxidizer flow rates, the charge transfer coefficient and the exchange current density are used to optimize the model. The FFC is assumed to be a lumped system and a zero dimensional model is thus developed. The model was able to achieve an accuracy up to 95%, which adds to its credibility. The fuel-rich combustion exhaust composition is predicted using chemical equilibrium analysis for the equivalence ratios of 1.25 to 1.4 with intervals of 0.5 at 800°C. The model predicts that the open circuit voltage decreases from 0.94 to 0.89 for the equivalence ratios of 1.4 to 1.25, respectively, which matches experimental results. The model also predicts that the maximum power density decreases with decrease in equivalence ratio. Negligible activation loss was observed in the results while the ohmic loss didn‘t vary significantly with equivalence ratio. The concentration loss increased with decrease in equivalence ratio, which also matches with experimental results.\",\"PeriodicalId\":282703,\"journal\":{\"name\":\"ASME 2020 Power Conference\",\"volume\":\"266 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2020 Power Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/power2020-16595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2020 Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/power2020-16595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

直接火焰燃料电池是在2004年开发出来的,从那以后就有了很多迭代。最新的迭代之一是微管火焰辅助燃料电池。尽管已经有大量的实验研究描述了火焰辅助燃料电池的性能和极化损失,但还没有一个模型可以描述它们的极化损失。因此,本文建立了一个模型来评估火焰辅助燃料电池的极化损失和性能。本文主要分析了电压和功率密度随电流密度的变化规律。建立了一个计算激活损耗、欧姆损耗和极化损耗的模型。利用先前发表的实验参数,如燃料电池层的尺寸、燃料和氧化剂的流速、电荷传递系数和交换电流密度来优化模型。假设FFC是一个集总系统,因此建立了一个零维模型。该模型的准确率高达95%,增加了其可信度。利用化学平衡分析,在800°C时,当量比为1.25至1.4,间隔为0.5,预测了富燃料燃烧排气成分。模型预测当等效比为1.4 ~ 1.25时,开路电压从0.94降低到0.89,与实验结果吻合。该模型还预测了最大功率密度随等效比的减小而减小。结果表明,活化损失可以忽略不计,欧姆损失随等效比变化不显著。浓度损失随当量比的减小而增大,这与实验结果吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling of Micro-Tubular Flame-Assisted Fuel Cells
Direct flame fuel cells were developed in 2004 and there have been many iterations of them ever since. One of the latest iterations are the micro-tubular flame-assisted fuel cells. Even though there has been significant experimental research characterizing the performance and polarization losses of flame-assisted fuel cells, there is no model that describes their polarization losses. A model is thus developed and presented in this paper to assess the polarization losses and performance of flame-assisted fuel cells. Voltage and power density variation with current density are the main parameters that are analyzed in this paper. A model for calculating activation, ohmic and polarization losses is developed. Experimental parameters from previously published work like dimensions of the fuel cell layers, the fuel and oxidizer flow rates, the charge transfer coefficient and the exchange current density are used to optimize the model. The FFC is assumed to be a lumped system and a zero dimensional model is thus developed. The model was able to achieve an accuracy up to 95%, which adds to its credibility. The fuel-rich combustion exhaust composition is predicted using chemical equilibrium analysis for the equivalence ratios of 1.25 to 1.4 with intervals of 0.5 at 800°C. The model predicts that the open circuit voltage decreases from 0.94 to 0.89 for the equivalence ratios of 1.4 to 1.25, respectively, which matches experimental results. The model also predicts that the maximum power density decreases with decrease in equivalence ratio. Negligible activation loss was observed in the results while the ohmic loss didn‘t vary significantly with equivalence ratio. The concentration loss increased with decrease in equivalence ratio, which also matches with experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信