地理图像分析的神经网络方法

P. Tchimev, Naoya Moritani, G. Georgiev, I. Valova
{"title":"地理图像分析的神经网络方法","authors":"P. Tchimev, Naoya Moritani, G. Georgiev, I. Valova","doi":"10.1109/IAI.2000.839571","DOIUrl":null,"url":null,"abstract":"We have developed a method based on the precise pixel-to-pixel matching between two images. This is done by automatic generation of displacement vectors, carrying the information of differences between the two images. For generating a layer of vectors defining the information of displacement we use a neural network with self-learning architecture. The proposed algorithm perform successful mapping, which can be quantitatively measured as 90% correct recognition as demonstrated by the results.","PeriodicalId":224112,"journal":{"name":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A neural network approach to geographic image analysis\",\"authors\":\"P. Tchimev, Naoya Moritani, G. Georgiev, I. Valova\",\"doi\":\"10.1109/IAI.2000.839571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a method based on the precise pixel-to-pixel matching between two images. This is done by automatic generation of displacement vectors, carrying the information of differences between the two images. For generating a layer of vectors defining the information of displacement we use a neural network with self-learning architecture. The proposed algorithm perform successful mapping, which can be quantitatively measured as 90% correct recognition as demonstrated by the results.\",\"PeriodicalId\":224112,\"journal\":{\"name\":\"4th IEEE Southwest Symposium on Image Analysis and Interpretation\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th IEEE Southwest Symposium on Image Analysis and Interpretation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI.2000.839571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.2000.839571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种基于两个图像之间精确的像素到像素匹配的方法。这是通过自动生成位移矢量来实现的,位移矢量携带了两幅图像之间的差异信息。为了生成一层定义位移信息的向量,我们使用了具有自学习结构的神经网络。本文提出的算法进行了成功的映射,结果表明,该算法的正确率达到90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neural network approach to geographic image analysis
We have developed a method based on the precise pixel-to-pixel matching between two images. This is done by automatic generation of displacement vectors, carrying the information of differences between the two images. For generating a layer of vectors defining the information of displacement we use a neural network with self-learning architecture. The proposed algorithm perform successful mapping, which can be quantitatively measured as 90% correct recognition as demonstrated by the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信