Wei Li, G. Ruan, N. Bhandari, Xin Wang, Ya Liu, H. Dushane, M. Sriyarathne, K. Harouaka, Yi-Tsung Lu, Guannan Deng, Yue Zhao, A. Kan, M. Tomson
{"title":"新型硫化铁防垢剂的研制","authors":"Wei Li, G. Ruan, N. Bhandari, Xin Wang, Ya Liu, H. Dushane, M. Sriyarathne, K. Harouaka, Yi-Tsung Lu, Guannan Deng, Yue Zhao, A. Kan, M. Tomson","doi":"10.2118/190755-MS","DOIUrl":null,"url":null,"abstract":"\n Increasing production activities in sour environments with equipment and piping made of low corrosion- resistant carbon steel result in significant iron sulfides (FeS) corrosion and scaling problems. FeS scale control is challenging as FeS formation is favored in production water chemistry (extremely low solubility and fast precipitation kinetics) with complex phase transformations. Efficient chemical control of FeS scales has not been found. A polymeric compound containing amide or its derivative functionalities showed a promising effect by controlling the FeS particle size on a nano-meter scale at threshold quantities. The FeS scales were successfully managed by forming a stable FeS particle suspension in the aqueous phase without partitioning into the oil-water interface. Current development focuses on understanding the interactions between the polymeric-compound based dispersants and environmental factors such as the presence of an oil phase, as well as silica. In addition, performance improvement of the identified dispersants by new chemical additives has been explored. Our results show that biocides such as Tetrakis (hydroxymethyl) phosphonium chloride (THPS) may not be as effective as needed for FeS scale inhibition benefit. At the tested conditions, EDTA shows satisfactory FeS scale inhibition and dissolution performance. In addition, silica significantly affects wettability of FeS particles with part of the previously oil-wet FeS partitioning into the aqueous phase. The FeS inhibition and dissolution effects of EDTA are kinetically \"poisoned\" by silica; while FeS-dispersing effect of polymeric compounds remains unaffected. However, the previously-shown ability that polymer dispersants keep already-formed large size FeS particles in the aqueous phase is also impaired.","PeriodicalId":445983,"journal":{"name":"Day 1 Wed, June 20, 2018","volume":"697 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Development of Novel Iron Sulfide Scale Control Chemicals\",\"authors\":\"Wei Li, G. Ruan, N. Bhandari, Xin Wang, Ya Liu, H. Dushane, M. Sriyarathne, K. Harouaka, Yi-Tsung Lu, Guannan Deng, Yue Zhao, A. Kan, M. Tomson\",\"doi\":\"10.2118/190755-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Increasing production activities in sour environments with equipment and piping made of low corrosion- resistant carbon steel result in significant iron sulfides (FeS) corrosion and scaling problems. FeS scale control is challenging as FeS formation is favored in production water chemistry (extremely low solubility and fast precipitation kinetics) with complex phase transformations. Efficient chemical control of FeS scales has not been found. A polymeric compound containing amide or its derivative functionalities showed a promising effect by controlling the FeS particle size on a nano-meter scale at threshold quantities. The FeS scales were successfully managed by forming a stable FeS particle suspension in the aqueous phase without partitioning into the oil-water interface. Current development focuses on understanding the interactions between the polymeric-compound based dispersants and environmental factors such as the presence of an oil phase, as well as silica. In addition, performance improvement of the identified dispersants by new chemical additives has been explored. Our results show that biocides such as Tetrakis (hydroxymethyl) phosphonium chloride (THPS) may not be as effective as needed for FeS scale inhibition benefit. At the tested conditions, EDTA shows satisfactory FeS scale inhibition and dissolution performance. In addition, silica significantly affects wettability of FeS particles with part of the previously oil-wet FeS partitioning into the aqueous phase. The FeS inhibition and dissolution effects of EDTA are kinetically \\\"poisoned\\\" by silica; while FeS-dispersing effect of polymeric compounds remains unaffected. However, the previously-shown ability that polymer dispersants keep already-formed large size FeS particles in the aqueous phase is also impaired.\",\"PeriodicalId\":445983,\"journal\":{\"name\":\"Day 1 Wed, June 20, 2018\",\"volume\":\"697 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Wed, June 20, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/190755-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Wed, June 20, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/190755-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of Novel Iron Sulfide Scale Control Chemicals
Increasing production activities in sour environments with equipment and piping made of low corrosion- resistant carbon steel result in significant iron sulfides (FeS) corrosion and scaling problems. FeS scale control is challenging as FeS formation is favored in production water chemistry (extremely low solubility and fast precipitation kinetics) with complex phase transformations. Efficient chemical control of FeS scales has not been found. A polymeric compound containing amide or its derivative functionalities showed a promising effect by controlling the FeS particle size on a nano-meter scale at threshold quantities. The FeS scales were successfully managed by forming a stable FeS particle suspension in the aqueous phase without partitioning into the oil-water interface. Current development focuses on understanding the interactions between the polymeric-compound based dispersants and environmental factors such as the presence of an oil phase, as well as silica. In addition, performance improvement of the identified dispersants by new chemical additives has been explored. Our results show that biocides such as Tetrakis (hydroxymethyl) phosphonium chloride (THPS) may not be as effective as needed for FeS scale inhibition benefit. At the tested conditions, EDTA shows satisfactory FeS scale inhibition and dissolution performance. In addition, silica significantly affects wettability of FeS particles with part of the previously oil-wet FeS partitioning into the aqueous phase. The FeS inhibition and dissolution effects of EDTA are kinetically "poisoned" by silica; while FeS-dispersing effect of polymeric compounds remains unaffected. However, the previously-shown ability that polymer dispersants keep already-formed large size FeS particles in the aqueous phase is also impaired.