{"title":"实时系统中分布式优先级分配的延迟算法","authors":"M. Neukirchner, S. Stein, R. Ernst","doi":"10.1109/ISORCW.2011.22","DOIUrl":null,"url":null,"abstract":"Integration of system components is a crucial challenge in the design of embedded real-time systems, as complex non-functional interdependencies may exist. [20] presented a framework, enabling autonomous verification of timing properties in the system itself. The work presented in this paper, takes that approach one step further, enabling autonomuous assignment of execution priorities under timing constraints. We present a distributed heuristic algorithm for the constraint statisfaction problem (CSP) of finding feasible priority assignments in static priority preemptive (SPP) scheduled hard real-time systems. The proposed heuristic considers end-to-end path latency constraints in arbitrary task graphs mapped on arbitrary platform graphs.","PeriodicalId":126022,"journal":{"name":"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Lazy Algorithm for Distributed Priority Assignment in Real-Time Systems\",\"authors\":\"M. Neukirchner, S. Stein, R. Ernst\",\"doi\":\"10.1109/ISORCW.2011.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integration of system components is a crucial challenge in the design of embedded real-time systems, as complex non-functional interdependencies may exist. [20] presented a framework, enabling autonomous verification of timing properties in the system itself. The work presented in this paper, takes that approach one step further, enabling autonomuous assignment of execution priorities under timing constraints. We present a distributed heuristic algorithm for the constraint statisfaction problem (CSP) of finding feasible priority assignments in static priority preemptive (SPP) scheduled hard real-time systems. The proposed heuristic considers end-to-end path latency constraints in arbitrary task graphs mapped on arbitrary platform graphs.\",\"PeriodicalId\":126022,\"journal\":{\"name\":\"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISORCW.2011.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORCW.2011.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Lazy Algorithm for Distributed Priority Assignment in Real-Time Systems
Integration of system components is a crucial challenge in the design of embedded real-time systems, as complex non-functional interdependencies may exist. [20] presented a framework, enabling autonomous verification of timing properties in the system itself. The work presented in this paper, takes that approach one step further, enabling autonomuous assignment of execution priorities under timing constraints. We present a distributed heuristic algorithm for the constraint statisfaction problem (CSP) of finding feasible priority assignments in static priority preemptive (SPP) scheduled hard real-time systems. The proposed heuristic considers end-to-end path latency constraints in arbitrary task graphs mapped on arbitrary platform graphs.