投影Anosov表示的极限集的Hausdorff维数

Olivier Glorieux, Daniel Monclair, Nicolas Tholozan
{"title":"投影Anosov表示的极限集的Hausdorff维数","authors":"Olivier Glorieux, Daniel Monclair, Nicolas Tholozan","doi":"10.5802/jep.241","DOIUrl":null,"url":null,"abstract":"We study the relation between critical exponents and Hausdorff dimensions of limit sets for projective Anosov representations. We prove that the Hausdorff dimension of the symmetric limit set in $\\mathbf{P}(\\mathbb{R}^{n}) \\times \\mathbf{P}({\\mathbb{R}^{n}}^*)$ is bounded between two critical exponents associated respectively to a highest weight and a simple root.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Hausdorff dimension of limit sets for projective Anosov representations\",\"authors\":\"Olivier Glorieux, Daniel Monclair, Nicolas Tholozan\",\"doi\":\"10.5802/jep.241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the relation between critical exponents and Hausdorff dimensions of limit sets for projective Anosov representations. We prove that the Hausdorff dimension of the symmetric limit set in $\\\\mathbf{P}(\\\\mathbb{R}^{n}) \\\\times \\\\mathbf{P}({\\\\mathbb{R}^{n}}^*)$ is bounded between two critical exponents associated respectively to a highest weight and a simple root.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

研究了射影Anosov表示的极限集的临界指数与Hausdorff维数之间的关系。证明了$\mathbf{P}(\mathbb{R}^{n}) \乘以\mathbf{P}({\mathbb{R}^{n}}^*)$中的对称极限集的Hausdorff维数有界于分别与最高权值和单根相关的两个临界指数之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hausdorff dimension of limit sets for projective Anosov representations
We study the relation between critical exponents and Hausdorff dimensions of limit sets for projective Anosov representations. We prove that the Hausdorff dimension of the symmetric limit set in $\mathbf{P}(\mathbb{R}^{n}) \times \mathbf{P}({\mathbb{R}^{n}}^*)$ is bounded between two critical exponents associated respectively to a highest weight and a simple root.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信