一种改进的拉普拉斯半监督回归

V. Kraus, Seif-Eddine Benkabou, K. Benabdeslem, F. Cherqui
{"title":"一种改进的拉普拉斯半监督回归","authors":"V. Kraus, Seif-Eddine Benkabou, K. Benabdeslem, F. Cherqui","doi":"10.1109/ICTAI.2018.00092","DOIUrl":null,"url":null,"abstract":"In this paper, we present an improved approach for semi-supervised regression problems. Our proposal is based on both, the use of the top eigen functions of integral operator derived from both labeled and unlabeled examples as the basis functions; and the learning of the prediction function by a Laplacian regularized regression. We compare our method with some representative ones dealing with semi-supervised regression. This comparison is done over several public data sets. We also verify the effectiveness of the proposed algorithm to reconstitute the installation date of the pipes of the Lyon Metropolis sewer network.","PeriodicalId":254686,"journal":{"name":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Improved Laplacian Semi-Supervised Regression\",\"authors\":\"V. Kraus, Seif-Eddine Benkabou, K. Benabdeslem, F. Cherqui\",\"doi\":\"10.1109/ICTAI.2018.00092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an improved approach for semi-supervised regression problems. Our proposal is based on both, the use of the top eigen functions of integral operator derived from both labeled and unlabeled examples as the basis functions; and the learning of the prediction function by a Laplacian regularized regression. We compare our method with some representative ones dealing with semi-supervised regression. This comparison is done over several public data sets. We also verify the effectiveness of the proposed algorithm to reconstitute the installation date of the pipes of the Lyon Metropolis sewer network.\",\"PeriodicalId\":254686,\"journal\":{\"name\":\"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2018.00092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2018.00092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种改进的半监督回归问题求解方法。我们的建议是基于这两者,使用从标记和未标记的例子中得到的积分算子的顶部特征函数作为基函数;通过拉普拉斯正则化回归学习预测函数。我们将我们的方法与一些具有代表性的半监督回归方法进行了比较。这种比较是在几个公共数据集上进行的。我们还验证了所提出的算法在重建里昂大都市污水管网管道安装日期方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Laplacian Semi-Supervised Regression
In this paper, we present an improved approach for semi-supervised regression problems. Our proposal is based on both, the use of the top eigen functions of integral operator derived from both labeled and unlabeled examples as the basis functions; and the learning of the prediction function by a Laplacian regularized regression. We compare our method with some representative ones dealing with semi-supervised regression. This comparison is done over several public data sets. We also verify the effectiveness of the proposed algorithm to reconstitute the installation date of the pipes of the Lyon Metropolis sewer network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信