基于GCN-RNN预测模型的交通网络弹性分析

Xing Lv, Zi-li Wang, Yi Ren, Dezhen Yang, Qiang Feng, Bo Sun, Du Liu
{"title":"基于GCN-RNN预测模型的交通网络弹性分析","authors":"Xing Lv, Zi-li Wang, Yi Ren, Dezhen Yang, Qiang Feng, Bo Sun, Du Liu","doi":"10.1109/QR2MSE46217.2019.9021131","DOIUrl":null,"url":null,"abstract":"Traffic network will inevitably appear to be congested. Once congestion occurs, the ability of the traffic network to quickly return to its original state to avoid affecting expansion will be critical. This work employs an efficient Graph Convolutional Network- Recurrent Neural Networks (GCN-RNN) prediction model to analysis the resilience of traffic network. Then, we trained the model by millions of GPS data. The result shows that the model can predict the trend of the state change of the road network well. At last, based on GCN-RNN model, we analyze the resilience of traffic network qualitatively and quantitatively, which has certain reference value for the resilience design of traffic network and the selection of network operation strategies.","PeriodicalId":233855,"journal":{"name":"2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Traffic Network Resilience Analysis Based On The GCN-RNN Prediction Model\",\"authors\":\"Xing Lv, Zi-li Wang, Yi Ren, Dezhen Yang, Qiang Feng, Bo Sun, Du Liu\",\"doi\":\"10.1109/QR2MSE46217.2019.9021131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic network will inevitably appear to be congested. Once congestion occurs, the ability of the traffic network to quickly return to its original state to avoid affecting expansion will be critical. This work employs an efficient Graph Convolutional Network- Recurrent Neural Networks (GCN-RNN) prediction model to analysis the resilience of traffic network. Then, we trained the model by millions of GPS data. The result shows that the model can predict the trend of the state change of the road network well. At last, based on GCN-RNN model, we analyze the resilience of traffic network qualitatively and quantitatively, which has certain reference value for the resilience design of traffic network and the selection of network operation strategies.\",\"PeriodicalId\":233855,\"journal\":{\"name\":\"2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QR2MSE46217.2019.9021131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QR2MSE46217.2019.9021131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

交通网络将不可避免地出现拥堵。一旦发生拥塞,交通网络迅速恢复到原有状态,避免影响扩展的能力将是至关重要的。本文采用一种高效的图形卷积网络-递归神经网络(GCN-RNN)预测模型来分析交通网络的弹性。然后,我们用数以百万计的GPS数据来训练模型。结果表明,该模型能较好地预测路网状态变化趋势。最后,基于GCN-RNN模型对交通网络弹性进行了定性和定量分析,对交通网络弹性设计和网络运营策略选择具有一定的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traffic Network Resilience Analysis Based On The GCN-RNN Prediction Model
Traffic network will inevitably appear to be congested. Once congestion occurs, the ability of the traffic network to quickly return to its original state to avoid affecting expansion will be critical. This work employs an efficient Graph Convolutional Network- Recurrent Neural Networks (GCN-RNN) prediction model to analysis the resilience of traffic network. Then, we trained the model by millions of GPS data. The result shows that the model can predict the trend of the state change of the road network well. At last, based on GCN-RNN model, we analyze the resilience of traffic network qualitatively and quantitatively, which has certain reference value for the resilience design of traffic network and the selection of network operation strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信