基于神经网络分析的Black Litterman投资组合

Diego Guerreiro Bernardes, O. L. Costa
{"title":"基于神经网络分析的Black Litterman投资组合","authors":"Diego Guerreiro Bernardes, O. L. Costa","doi":"10.21528/LNLM-VOL18-NO1-ART5","DOIUrl":null,"url":null,"abstract":"This paper presents an autonomous portfolio management system. Autonomous investment systems consist of a series of buy and sell rules on financial markets, which can be executed by machines, oriented to maximizing investor gains. The system uses a Neural Network approach for monitoring the market and the Black-Litterman model for portfolio composition. The ten most traded assets from the Bovespa Index are analyzed, with dedicated neural networks, which suggests future return estimates using technical indicators as input. Those estimates are inserted in the Black-Litterman model which proposes daily portfolio composition using long and short positions. The results are compared to a second autonomous trading system without the Black-Litterman approach, referred to as Benchmark. The numerical results show a great performance compared to the Benchmark, especially the risk-return ratio, captured by the Sharpe Index. Such results suggest that the use of Bayesian inference models combined with neural networks may be a good alternative in portfolio management.","PeriodicalId":386768,"journal":{"name":"Learning and Nonlinear Models","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carteiras de Black Litterman com Análises Baseadas em Redes Neurais\",\"authors\":\"Diego Guerreiro Bernardes, O. L. Costa\",\"doi\":\"10.21528/LNLM-VOL18-NO1-ART5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an autonomous portfolio management system. Autonomous investment systems consist of a series of buy and sell rules on financial markets, which can be executed by machines, oriented to maximizing investor gains. The system uses a Neural Network approach for monitoring the market and the Black-Litterman model for portfolio composition. The ten most traded assets from the Bovespa Index are analyzed, with dedicated neural networks, which suggests future return estimates using technical indicators as input. Those estimates are inserted in the Black-Litterman model which proposes daily portfolio composition using long and short positions. The results are compared to a second autonomous trading system without the Black-Litterman approach, referred to as Benchmark. The numerical results show a great performance compared to the Benchmark, especially the risk-return ratio, captured by the Sharpe Index. Such results suggest that the use of Bayesian inference models combined with neural networks may be a good alternative in portfolio management.\",\"PeriodicalId\":386768,\"journal\":{\"name\":\"Learning and Nonlinear Models\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Learning and Nonlinear Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21528/LNLM-VOL18-NO1-ART5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Nonlinear Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21528/LNLM-VOL18-NO1-ART5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个自主的项目组合管理系统。自主投资系统由金融市场上的一系列买卖规则组成,这些规则可以由机器执行,以最大化投资者收益为目标。该系统使用神经网络方法监测市场,并使用Black-Litterman模型进行投资组合。我们分析了Bovespa指数中交易量最大的10种资产,并使用专用的神经网络,以技术指标为输入,预测未来的回报。这些估计被插入到Black-Litterman模型中,该模型利用多头和空头头寸提出每日投资组合的构成。研究人员将其结果与另一个不采用布莱克-利特曼方法的自主交易系统Benchmark进行了比较。数值计算结果表明,与基准指数相比,夏普指数的风险回报率表现优异。这些结果表明,将贝叶斯推理模型与神经网络相结合可能是投资组合管理的一个很好的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carteiras de Black Litterman com Análises Baseadas em Redes Neurais
This paper presents an autonomous portfolio management system. Autonomous investment systems consist of a series of buy and sell rules on financial markets, which can be executed by machines, oriented to maximizing investor gains. The system uses a Neural Network approach for monitoring the market and the Black-Litterman model for portfolio composition. The ten most traded assets from the Bovespa Index are analyzed, with dedicated neural networks, which suggests future return estimates using technical indicators as input. Those estimates are inserted in the Black-Litterman model which proposes daily portfolio composition using long and short positions. The results are compared to a second autonomous trading system without the Black-Litterman approach, referred to as Benchmark. The numerical results show a great performance compared to the Benchmark, especially the risk-return ratio, captured by the Sharpe Index. Such results suggest that the use of Bayesian inference models combined with neural networks may be a good alternative in portfolio management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信